Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-08T10:58:45.613Z Has data issue: false hasContentIssue false

Investigation of sheet-flow processes based on novel acoustic high-resolution velocity and concentration measurements

Published online by Cambridge University Press:  12 February 2015

Thibaud Revil-Baudard
Affiliation:
LEGI, Grenoble University, Domaine Universitaire, BP 53, 38041 Grenoble CEDEX 9, France
Julien Chauchat
Affiliation:
LEGI, Grenoble University, Domaine Universitaire, BP 53, 38041 Grenoble CEDEX 9, France
David Hurther
Affiliation:
LEGI, Grenoble University, Domaine Universitaire, BP 53, 38041 Grenoble CEDEX 9, France
Pierre-Alain Barraud
Affiliation:
LEGI, Grenoble University, Domaine Universitaire, BP 53, 38041 Grenoble CEDEX 9, France

Abstract

A new dataset of uniform and steady sheet-flow experiments is presented in this paper. An acoustic concentration and velocity profiler (ACVP) is used to measure time-resolved profiles of collocated 2C velocity ($u,w$) and sediment concentration and to measure the time evolution of the bed interface position. Ensemble averaging over 11 similar experiment realisations is done to evaluate the mean profiles of streamwise velocity, concentration, sediment flux and Reynolds shear stress. The repeatability, stationarity and uniformity of the flow are carefully checked for a Shields number ${\it\theta}\approx 0.5$ and a suspension number of $S=1.1$. The mean profile analysis allows to separate the flow into two distinct layers: a suspension layer dominated by turbulence and a bed layer dominated by granular interactions. The bed layer can be further subdivided into a frictional layer capped by a collisional layer. In the suspension layer, the mixing length profile is linear with a strongly reduced von Karman parameter equal to 0.225. The Schmidt number is found to be constant in this region with a mean value of ${\it\sigma}_{s}=0.44$. The present results are then interpreted in terms of existing modelling approaches and the underlying assumptions are discussed. In particular, the well-known Rouse profile is shown to predict the concentration profile adequately in the suspension layer provided that all the required parameters can be evaluated separately. However, the strong intermittency of the flow observed in the bed layer under the impact of turbulent large-scale coherent flow structures suggests the limitations of averaged steady two-phase flow models.

Type
Papers
Copyright
© 2015 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

van der A, D. A., O’Donoghue, T., Davies, A. G. & Ribberink, J. S. 2011 Experimental study of the turbulent boundary layer in acceleration-skewed oscillatory flow. J. Fluid Mech. 684, 251283.CrossRefGoogle Scholar
Amoudry, L., Hsu, T. J. & Liu, P. L. F. 2008 Two-phase model for sand transport in sheet flow regime. J. Geophys. Res. 113 (C3).Google Scholar
Andreotti, B., Forterre, Y. & Pouliquen, O. 2013 Granular Media: Between Fluid and Solid. Cambridge University Press.CrossRefGoogle Scholar
Armanini, A., Capart, H., Fraccarollo, L. & Larcher, M. 2005 Rheological stratification in experimental free-surface flows of granular-liquid mixtures. J. Fluid Mech. 532, 269319.CrossRefGoogle Scholar
Aussillous, P., Chauchat, J., Pailha, M., Médale, M. & Guazzelli, E. 2013 Investigation of the mobile granular layer in bedload transport by laminar shearing flows. J. Fluid Mech. 736, 594615.CrossRefGoogle Scholar
Bagnold, R. A. 1954 Experiments on a gravity-free dispersion of large solid spheres in a Newtonian fluid under shear. Phil. Trans. R. Soc. Lond. 225, 4963.Google Scholar
Bagnold, R. A. 1956 The flow of cohesionless grains in fluids. Phil. Trans. R. Soc. Lond. 249, 235297.Google Scholar
Berzi, D. 2011 Analytical solution of collisional sheet flows. J. Hydraul. Engng 137 (10), 12001207.CrossRefGoogle Scholar
Berzi, D. & Fraccarollo, L. 2013 Inclined, collisional sediment transport. Phys. Fluids 25 (10), 106601-11.CrossRefGoogle Scholar
Best, J., Bennett, S., Bridge, J. & Leeder, M. 1997 Turbulence modulation and particle velocities over flat sand beds at low transport rates. J. Hydraul. Engng 123 (12), 11181129.CrossRefGoogle Scholar
Boyer, F., Guazzelli, E. & Pouliquen, O. 2011 Unifying suspension and granular rheology. Phys. Rev. Lett. 107, 188301.CrossRefGoogle ScholarPubMed
Capart, H. & Fraccarollo, L. 2011 Transport layer structure in intense bed-load. Geophys. Res. Lett. 38 (20), L20402.CrossRefGoogle Scholar
Cassar, C., Nicolas, M. & Pouliquen, O. 2005 Submarine granular flows down inclined planes. Phys. Fluids 17 (10), 103301.CrossRefGoogle Scholar
Castro-Orgaz, O., Giráldez, J. V., Mateos, L. & Dey, S. 2012 Is the von Kármán constant affected by sediment suspension? J. Geophys. Res. 117 (F4).Google Scholar
Chassagneux, F. X. & Hurther, D. 2014 Wave bottom boundary layer processes below irregular surfzone breaking waves with light-weight sheet flow particle transport. J. Geophys. Res. 119 (3), 16681690.CrossRefGoogle Scholar
Chauchat, J. & Guillou, S. 2008 On turbulence closures for two-phase sediment-laden flows models. J. Geophys. Res. 113 (C11).Google Scholar
Chauchat, J. & Médale, M. 2010 A 3D numerical model for incompressible two-phase flow of a granular bed submitted to a laminar shearing flow. Comput. Meth. Appl. Mech. Engng 199, 439449.CrossRefGoogle Scholar
Chauchat, J. & Médale, M. 2014 A three-dimensional numerical model for dense granular flows based on the rheology. J. Comput. Phys. 256, 696712.CrossRefGoogle Scholar
Cowen, E. A., Dudley, R. D., Liao, Q., Variano, E. A. & Liu, P. L.-F. 2010 An in situ borescopic quantitative imaging profiler for the measurement of high concentration sediment velocity. Exp. Fluids 49 (1), 7788.CrossRefGoogle Scholar
Daniel, S. M.1965 Flow of suspension in a rectangular channel. PhD thesis, University of Saskatchewan, Canada.Google Scholar
Einstein, H. A.1950 The bed load function for sedimentation in open channel channel flows. Tech. Rep. 1026. US Department of Agriculture.Google Scholar
Ferry, J. & Balachandar, S. 2001 A fast eulerian method for disperse two-phase flow. Intl J. Multiphase Flow 27 (7), 11991226.CrossRefGoogle Scholar
Forterre, Y. & Pouliquen, O. 2008 Flows of dense granular media. Annu. Rev. Fluid Mech. 40, 124.CrossRefGoogle Scholar
Gaudio, R., Miglio, A. & Dey, S. 2010 Non-universality of von Kármán’s $k$ in fluvial streams. J. Hydraul. Res. 48 (5), 658663.CrossRefGoogle Scholar
GDR Midi 2004 On dense granular flows. Eur. Phys. J. E 14, 341365.CrossRefGoogle Scholar
Graf, W. H. & Cellino, M. 2002 Suspension flows in open channels; experimental study. J. Hydraul. Res. 40, 435447.CrossRefGoogle Scholar
Greimann, B. P., Muste, M. Jr & Holly, F. M. 1999 Two-phase formulation of suspended sediment transport. J. Hydraul. Res. 37, 479500.CrossRefGoogle Scholar
Hanes, D. M. & Inman, D. L. 1985 Experimental evaluation of a dynamic yield criterion for granular fluid flows. J. Geophys. Res. 90 (B5), 36703674.CrossRefGoogle Scholar
Hsu, T. J., Jenkins, J. T. & Liu, P. L.-F. 2004 On two-phase sediment transport: sheet flow of massive particles. Proc. R. Soc. Lond. A 460 (2048), 22232250.CrossRefGoogle Scholar
Hurther, D. & Lemmin, U. 2001 Shear stress statistics and wall similarity analysis in turbulent boundary layers using a high resolution 3D ADVP. J. Ocean Engng 25, 446457.CrossRefGoogle Scholar
Hurther, D. & Lemmin, U. 2008 Improved turbulence profiling with field-adapted acoustic doppler velocimeters using a bifrequency Doppler noise suppression method. J. Atmos. Ocean. Technol. 25, 452463.CrossRefGoogle Scholar
Hurther, D., Lemmin, U. & Terray, E. A. 2007 Turbulent transport in the outer region of rough-wall open-channel flows: the contribution of large coherent shear stress structures (LC3S). J. Fluid Mech. 574, 465493.CrossRefGoogle Scholar
Hurther, D. & Thorne, P. D. 2011 Suspension and near-bed load sediment transport processes above a migrating, sand-rippled bed under shoaling waves. J. Geophys. Res. 116 (C7).Google Scholar
Hurther, D., Thorne, P. D., Bricault, M., Lemmin, U. & Barnoud, J. M. 2011 A multi-frequency acoustic concentration and velocity profiler (ACVP) for boundary layer measurements of fine-scale flow and sediment transport processes. Coast. Engng 58, 594605.CrossRefGoogle Scholar
Ismail, H. M. 1951 Turbulent transfer mechanism and suspended sediment in closed channels. J. Hydraul. Division HY6, 4959.Google Scholar
Jenkins, J. T. 2007 Dense inclined flow of inelastic spheres. Granul. Matt. 10, 4752.CrossRefGoogle Scholar
Jenkins, J. T. & Hanes, D. M. 1998 Collisional sheet flows of sediment driven by a turbulent fluid. J. Fluid Mech. 370, 2952.CrossRefGoogle Scholar
Kidanemariam, A. G., Chan-Braun, C., Doychev, T. & Uhlmann, M. 2013 Direct numerical simulation of horizontal open channel flow with finite-size, heavy particles at low solid volume fraction. New J. Phys. 15 (2), 025031.CrossRefGoogle Scholar
Lu, S. S. & Willmarth, W. W. 1973 Measurements of the structure of the Reynolds stress in a turbulent boundary layer. J. Fluid Mech. 60, 481511.CrossRefGoogle Scholar
Meyer-Peter, E. & Muller, R. 1948 Formulas for bed-load transport. In 2nd Meeting of the International Association of Hydraulic and Structural Research, Stockholm, Sweden, pp. 3464.Google Scholar
Mignot, E., Hurther, D. & Barthelemy, E. 2009 On the structure of shear stress and turbulent kinetic energy flux across the roughness layer of a gravel-bed channel flow. J. Fluid Mech. 638, 423452.CrossRefGoogle Scholar
Muste, M., Yu, K., Fujita, I. & Ettema, R. 2005 Two-phase versus mixed-flow perspective on suspended sediment transport in turbulent channel flows. Water Resour. Res. 41, 10.CrossRefGoogle Scholar
Muste, M., Yu, K. & Spasojevic, M. 2004 Practical aspects of ADCP data use for quantification of mean river flow characteristics; part I: moving-vessel measurements. Flow Meas. Instrum. 15 (1), 116.CrossRefGoogle Scholar
Naqshband, S., Ribberink, J. S., Hurther, D. & Hulscher, S. J. M. H. 2014 Bed load and suspended load contributions to migrating sand dunes in equilibrium. J. Geophys. Res. 119 (5), 10431063.CrossRefGoogle Scholar
Nielsen, P. & Teakle, I. A. L. 2004 Turbulent diffusion of momentum and suspended particles: a finite-mixing-length theory. Phys. Fluids 16 (7), 23422348.CrossRefGoogle Scholar
Nnadi, F. N. & Wilson, K. C. 1992 Motion of contact-load particles at high shear stress. J. Hydraul. Engng 118 (2), 16701684.CrossRefGoogle Scholar
Ouriemi, M., Aussillous, P. & Guazzelli, E. 2009 Sediment dynamics. Part 1. Bed-load transport by shearing flows. J. Fluid Mech. 636, 295319.CrossRefGoogle Scholar
Pasini, J. M. & Jenkins, J. T. 2005 Aeolian transport with collisional suspension. Phil. Trans. R. Soc. Lond. A 363 (1832), 16251646.Google ScholarPubMed
Prandtl, L. 1926 Bericht über neuere turbulenzforschung. Hydraulische Probleme VDI-Verlag, LPGA 2, pp. 113.Google Scholar
Pugh, F. J. & Wilson, K. C. 1999 Velocity and concentration distributions in sheet flow above plane beds. J. Hydraul. Engng 125 (2), 117125.CrossRefGoogle Scholar
Revil-Baudard, T. & Chauchat, J. 2013 A two-phase model for sheet flow regime based on dense granular flow rheology. J. Geophys. Res. 118 (2), 619634.CrossRefGoogle Scholar
Rouse, H. 1937 Modern conceptions of the mechanics of turbulence. Trans. Am. Soc. Civ. Engng 102, 463505.CrossRefGoogle Scholar
Song, T. & Graf, W. H. 1994 Non uniform open-channel flow over a rough bed. J. Hydrosci. Hydraul. Engng 12 (1), 125.Google Scholar
Spinewine, B., Capart, H., Fraccarollo, L. & Larcher, M. 2011 Laser stripe measurements of near-wall solid fraction in channel flows of liquid-granular mixtures. Exp. Fluids 50, 15071525.CrossRefGoogle Scholar
Sumer, B. M., Kozakiewicz, A., Fredsøe, J. & Deigaard, R. 1996 Velocity and concentration profiles in sheet-flow layer of movable bed. J. Hydraul. Engng 122 (10), 549558.CrossRefGoogle Scholar
Thorne, P. D. & Hanes, D. M. 2002 A review of acoustic measurement of small-scale sediment processes. Cont. Shelf Res. 22 (4), 603632.CrossRefGoogle Scholar
Thorne, P. D. & Hurther, D. 2014 An overview on the use of backscattered sound for measuring suspended particle size and concentration profiles in non-cohesive inorganic sediment transport studies. Cont. Shelf Res. 73 (0), 97118.CrossRefGoogle Scholar
Thorne, P. D., Hurther, D. & Moate, B. D. 2011 Acoustic inversions for measuring boundary layer suspended sediment processes. J. Acoust. Soc. Am. 130 (3), 11881200.CrossRefGoogle ScholarPubMed
Vanoni, V. A. 1975 Sedimentation Engineering. American Society of Civil Engineers.Google Scholar
Vanoni, V. A. & Brooks, N. H.1957 Laboratory studies of the roughness and suspended load of alluvial streams. Sedimentation Laboratory, California Institute of Technology, Pasadena, CA.Google Scholar
Van Rijn, L. C. 1984 Sediment transport, part II: suspended load transport. J. Hydraul. Engng 110, 16131641.CrossRefGoogle Scholar
Villaret, C. & Trowbridge, J. H. 1991 Effects of stratification by suspended sediments on turbulent shear flows. J. Geophys. Res. 96 (C6), 1065910680.CrossRefGoogle Scholar
Vowinckel, B., Kempe, T. & Fröhlich, J. 2014 Fluid–particle interaction in turbulent open channel flow with fully-resolved mobile beds. Adv. Water Resour. 72, 3244.CrossRefGoogle Scholar
Wilson, K. C. 1966 Bed-load transport at high shear stress. J. Hydraul. Division HY6, 4959.CrossRefGoogle Scholar
Wilson, K. C. 1989 Mobile-bed friction at high shear stress. J. Hydraul. Engng 115 (6), 825830.CrossRefGoogle Scholar
Yalin, M. S. 1977 Mechanics of Sediment Transport, 2nd edn. Pergamon.Google Scholar
Yang, S.-Q. & Chow, A. T. 2008 Turbulence structures in non-uniform flows. Adv. Water Resour. 31 (10), 13441351.CrossRefGoogle Scholar