Published online by Cambridge University Press: 29 September 2023
In this paper the multiscale dynamics of streamwise-rotating channel turbulence is studied through direct numerical simulations. Using the generalized Kolmogorov equation, we find that as rotation becomes stronger, the turbulence in the buffer layer is obviously reduced by the intense spatial turbulent convection. On the contrary, in other layers, the turbulence is strengthened mainly by the modified production peak, the intense spatial turbulent convection and the suppressed forward energy cascades. It is also discovered that under a system rotation, small- and large-scale inclined structures have different angles with the streamwise direction, and the difference is strengthened with increasing rotation rates. The multiscale inclined structures are further confirmed quantitatively through a newly defined angle based on the velocity vector. Through the budget balance of Reynolds stresses and the hairpin vortex model, it is discovered that the Coriolis force and the pressure–velocity correlation are responsible for sustaining the inclined structures. The Coriolis force directly decreases the inclination angles but indirectly induces inclined structures in a more predominant way. The pressure–velocity correlation term is related to the strain rate tensor. Finally, the anisotropic generalized Kolmogorov equation is used to validate the above findings and reveals that the multiscale behaviours of the inclined structures are mainly induced by the mean spanwise velocity gradients.
To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.
To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.