Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-13T20:51:13.108Z Has data issue: false hasContentIssue false

INDIVISIBILITY OF HEEGNER CYCLES OVER SHIMURA CURVES AND SELMER GROUPS

Published online by Cambridge University Press:  15 February 2022

Haining Wang*
Affiliation:
Shanghai Center for Mathematical Sciences, Fudan University, No. 2005 Songhu Road, Shanghai, 200438, China

Abstract

In this article, we show that the Abel–Jacobi images of the Heegner cycles over the Shimura curves constructed by Nekovar, Besser and the theta elements contructed by Chida–Hsieh form a bipartite Euler system in the sense of Howard. As an application of this, we deduce a converse to Gross–Zagier–Kolyvagin type theorem for higher weight modular forms generalising works of Wei Zhang and Skinner for modular forms of weight 2. That is, we show that if the rank of certain residual Selmer group is 1, then the Abel–Jacobi image of the Heegner cycle is nonzero in this residual Selmer group.

Type
Research Article
Copyright
© The Author(s), 2022. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bertolini, M. and Darmon, H., Iwasawa’s main conjecture for elliptic curves over anticyclotomic ${\mathbb{Z}}_{\mathrm{p}}$ -extensions, Ann. Math. (2) 162 (2005), 164.10.4007/annals.2005.162.1CrossRefGoogle Scholar
Besser, A., CM cycles over Shimura curves, J. Algebraic Geom. 4(4) (1995), 659691.Google Scholar
Boston, N., Lenstra, H. and Ribet, K., Quotients of group rings arising from two-dimensional representations, C. R. Acad. Sci. Paris Sér. I Math. 312(4) (1991), 323328.Google Scholar
Boutot, J.-F. and Carayol, H., Uniformisation $\mathrm{p}$ -adique des courbes de Shimura: les théorèmes de Cerednik et de Drinfeld, Courbes modulaires et courbes de Shimura (Orsay, 1987/1988), Astérisque (1991), No. 196–197, 45158.Google Scholar
Burungale, A., Castella, F. and Kim, C., A proof of Perrin–Riou’s Heegner point main conjecture, Preprint.Google Scholar
Buzzard, K., Integral models of certain Shimura curves, Duke. Math. J. 87(3) (1997), 591612.CrossRefGoogle Scholar
Chida, M., Selmer groups and central values of L-functions of modular forms, Ann. Inst. Fourier (Grenoble) 67(3) (2017), 12311276.10.5802/aif.3108CrossRefGoogle Scholar
Chida, M. and Hsieh, M.-L., Anticyclotomic Iwasawa main conjecture for modular forms, Compos. Math. 151 (2015), 863897.CrossRefGoogle Scholar
Chida, M. and Hsieh, M.-L., Special values of anticyclotomic $\mathrm{L}$ -functions for modular forms, J. Reine Angew. Math. 741(5) (2018), 87131.CrossRefGoogle Scholar
Darmon, H., Diamond, F. and Taylor, R., Fermat’s last theorem, in Current Developments in Mathematics, 1995 (Cambridge, MA) (International Press, Cambridge, MA, 1994), 1154.Google Scholar
Diamond, F. and Taylor, R., Non-optimal level of mod $\mathrm{l}$ modular representations, Invent. Math. 115(3) (1994), 435462.10.1007/BF01231768CrossRefGoogle Scholar
Diamond, F. and Taylor, R., Lifting modular mod $\mathrm{l}$ representations, Duke. Math. J. 74(2) (1994), 253269.10.1215/S0012-7094-94-07413-9CrossRefGoogle Scholar
Elias, Y. and de Vera-Piquero, C., CM cycles on Kuga–Sato varieties over Shimura curves and Selmer groups, Forum Math. 30(2) (2017), 601672.Google Scholar
Howard, B., Bipartite Euler systems, J. Reine Angew. Math. 597 (2006), 125.CrossRefGoogle Scholar
Hung, P., On the non-vanishing mod l of central L-values with anticyclotomic twists for Hilbert modular forms, J. Number Theory 173 (2017), 170209.CrossRefGoogle Scholar
Illusie, L., Sur la Formule de Picard–Lefschetz, in Algebraic geometry 2000, Azumino (Hotaka), Advanced Studies in Pure Mathematics (Mathematical Society of Japan, Tokyo, 2002). (2002), 249268.Google Scholar
Iovita, A. and Speiss, M., Derivatives of $\mathrm{p}$ -adic L-functions, Heegner cycles and mondromy modules attached to modular forms, Invent. Math. 159(3) (2005), 607656.Google Scholar
Kato, K., p-Adic Hodge theory and values of zeta functions of modular forms, Cohomologies p-adiques et applications arithmetiques. III. Asterique 295 (2004), 117290.Google Scholar
Kudla, S. and Rapoport, M., Height pairings on Shimura curves and $\mathrm{p}$ -adic uniformization, Invent. Math. 142(1) (2000), 153223.10.1007/s002220000087CrossRefGoogle Scholar
Liu, Y., Bounding cubic-triple product Selmer groups of elliptic curves, J. Eur. Math. Soc. (JEMS) 21(5) (2017), 14111508.CrossRefGoogle Scholar
Liu, Y. and Tian, Y., Supersingular locus of Hilbert modular varieties, arithmetic level raising and Selmer groups, Preprint, arXiv:1710.11492.Google Scholar
Liu, Y., Tian, Y., Xiao, L., Zhang, W. and Zhu, X., On the Beilinson–Bloch–Kato conjecture for Rankin–Selberg motives, Preprint. arXiv:1912.11942.Google Scholar
Longo, M. and Vigni, S., Kolyvagin systems and Iwasawa theory of generalized Heegner cycles, Kyoto J. Math. 59(3) (2019), 717746.CrossRefGoogle Scholar
Manning, J. and Shotton, J., Ihara’s lemma for Shimura curves over totally real fields via patching, Preprint.Google Scholar
Nekovar, J., Kolyvagin’s method for Chow groups of Kuga–Sato varieties, Invent. Math. 107 (1992), 99125.CrossRefGoogle Scholar
C.-H. Kim and Ota, K., On the quantitative variation of congruence ideals and integral periods of modular forms, Preprint.Google Scholar
Pollack, R. and Weston, T., On anticyclotomic $\unicode{x3bc}$ -invariants of modular forms, Compos. Math. 147(5) (2011), 13531381 10.1112/S0010437X11005318CrossRefGoogle Scholar
Rapoport, M. and Zink, Th., Über die lokale Zetafunktion von Shimuravarietäten. Monodromiefiltration und verschwindende Zyklen in ungleicher Charakteristik, Invent. Math. 68(1) (1982), 21101.10.1007/BF01394268CrossRefGoogle Scholar
Ribet, K., Congruence relations between modular forms, in Proceedings of the International Congress of Mathematicians, Vol. 1 (PWN, Warsaw, 1984), 503514.Google Scholar
Ribet, K., On modular representations of $\mathrm{Gal}\left(\overline{\mathsf{Q}}/\mathsf{Q}\right)$ arising from modular forms, Invent. Math. 100(2) (1990), 431476.CrossRefGoogle Scholar
Saito, T., Weight spectral sequences and independence of $\mathrm{l}$ , J. Inst. Math. Jussieu 2(4) (2003), 583634.10.1017/S1474748003000173CrossRefGoogle Scholar
Saito, T., p-Adic Hodge theory and Hilbert modular forms, Compositio Math. 145(5) (2009), 10811113.10.1112/S0010437X09004175CrossRefGoogle Scholar
SGA5, Cohomologie l-adique et fonctions L, Lect. Notes Math., Vol. 589 (Springer, Berlin, 1977).Google Scholar
Skinner, C., A converse to a theorem of Gross, Zagier, and Kolyvagin. Ann. Math. (2). 19(2) (2020), 329354.Google Scholar
Skinner, C. and Urban, E., The Iwasawa main conjectures for $\mathrm{G}{\mathrm{L}}_2$ , Invent. Math. 195(1) (2014), 1277.10.1007/s00222-013-0448-1CrossRefGoogle Scholar
Wang, H., Arithmetic level raising on triple product of Shimura curves and Gross–Schoen diagonal cycles I: Ramified case, Preprint, arXiv:2004.00555.Google Scholar
Wang, H., Arithmetic level raising on triple product of Shimura curves and Gross–Schoen diagonal cycles II: bipartite Euler system, Preprint, arXiv:2004.14916.Google Scholar
Xiao, L., Lectures at the Morningside center.Google Scholar
Zhang, S., Heights of Heegner cycles and derivatives of L-series, Invent. Math. 130(2) (1997), 99152.10.1007/s002220050179CrossRefGoogle Scholar
Zhang, W., Selmer groups and the indivisibility of Heegner points, Camb. J. Math. 2(2) (2014), 191253.CrossRefGoogle Scholar