Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-14T04:50:47.911Z Has data issue: false hasContentIssue false

Effect of thermodynamic instability on viscous fingering of binary mixtures in a Hele-Shaw cell

Published online by Cambridge University Press:  02 October 2023

Min Chan Kim
Affiliation:
Department of Chemical Engineering, Jeju National University, Jeju 63243, Republic of Korea
Lopamudra Palodhi
Affiliation:
Department of Mathematics, Indian Institute of Technology Ropar, Rupnagar 140001, India
Joung Sook Hong
Affiliation:
School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
Manoranjan Mishra*
Affiliation:
Department of Mathematics, Indian Institute of Technology Ropar, Rupnagar 140001, India
*
Email address for correspondence: manoranjan@iitrpr.ac.in

Abstract

The coupled effects of thermodynamic and hydrodynamic instabilities are studied during viscous fingering (VF). We introduced a modified Cahn–Hilliard phase-field model in conjunction with the Korteweg force in the classical VF model and derived consistent governing equations. The free energy of the partially miscible system is described using a modified Flory–Huggins model, which allows us to investigate the temporal evolution of spatial inhomogeneities. The mass flux in the Cahn–Hilliard equations is modified according to modern diffusion theory. The governing equations have been solved through an in-house model implementation using the COMSOL multiphysics software. We successfully demonstrated the transition from the finger-like structures to the droplet formation during spinodal decomposition as demonstrated experimentally in the literature. Our results are also in agreement with earlier numerical results obtained using a classical Landau type mixing energy. We further systematically studied the effects of the Margules parameter (interaction parameter) and the gradient parameter, which is associated to the thermodynamic length scale and capillary number on the VF. Aysmmetric features of the binary mixture are also investigated showing a stronger thermodynamic effect on the system with increasing phase separation and, hence, droplet formation.

Type
JFM Papers
Copyright
© The Author(s), 2023. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Amooie, M.A., Soltanian, M.R. & Moortgat, J. 2017 Hydrothermodynamic mixing of fluids across phases in porous media. Geophys. Res. Lett. 44 (8), 36243634.CrossRefGoogle Scholar
Ariyapadi, M.V. & Nauman, E.B. 1990 Gradient energy parameters for polymer–polymer–solvent systems and their application to spinodal decomposition in true ternary systems. J. Polym. Sci. 28 (12), 23952409.CrossRefGoogle Scholar
Austin-Adigio, M. & Gates, I.D. 2020 Thermal viscous fingering in thermal recovery processes. Energies 13 (18), 4986.CrossRefGoogle Scholar
Bihi, I., Baudoin, M., Butler, J.E., Faille, C. & Zoueshtiagh, F. 2016 Inverse Saffman–Taylor experiments with particles lead to capillarity driven fingering instabilities. Phys. Rev. Lett. 117 (3), 034501.CrossRefGoogle ScholarPubMed
Bird, R., Stewart, W. & Lightfoot, E. 2002 Transport Phenomena, 2nd edn. John Wiley and Sons.Google Scholar
Cahn, J.W. & Hilliard, J.E. 1958 Free energy of a nonuniform system. I. Interfacial free energy. J. Chem. Phys. 28 (2), 258267.CrossRefGoogle Scholar
Chao, Y., Mak, S.Y., Ma, Q., Wu, J., Ding, Z., Xu, L. & Shum, H.C. 2018 Emergence of droplets at the nonequilibrium all-aqueous interface in a vertical Hele-Shaw cell. Langmuir 34 (9), 30303036.CrossRefGoogle Scholar
Chen, C.-Y. & Meiburg, E. 1998 Miscible porous media displacements in the quarter five-spot configuration. Part 1. The homogeneous case. J. Fluid Mech. 371, 233268.CrossRefGoogle Scholar
COMSOL AB 2019 Comsol multiphysics v. 5.4 reference manual. COMSOL.Google Scholar
Cussler, E.L. 2009 Diffusion: Mass Transfer in Fluid Systems. Cambridge University Press.CrossRefGoogle Scholar
Falkovitz, M.S. & Keller, J.B. 1988 Precipitation pattern formation. J. Chem. Phys. 88 (1), 416421.CrossRefGoogle Scholar
Flory, P.J. 1942 Thermodynamics of high polymer solutions. J. Chem. Phys. 10 (1), 5161.CrossRefGoogle Scholar
Fu, X., Cueto-Felgueroso, L. & Juanes, R. 2016 Thermodynamic coarsening arrested by viscous fingering in partially miscible binary mixtures. Phys. Rev. E 94 (3), 033111.CrossRefGoogle ScholarPubMed
Fu, X., Cueto-Felgueroso, L. & Juanes, R. 2017 Viscous fingering with partially miscible fluids. Phys. Rev. Fluids 2 (10), 104001.CrossRefGoogle Scholar
Gérard, T. & De Wit, A. 2009 Miscible viscous fingering induced by a simple $a+ b \rightarrow c$ chemical reaction. Phys. Rev. E 79 (1), 016308.CrossRefGoogle Scholar
Gobbert, M.K. & Yang, S. 2008 Numerical demonstration of finite element convergence for Lagrange elements in COMSOL multiphysics. In Proceedings of the COMSOL Conference, Boston, vol. 2008. COMSOL.Google Scholar
Hilhorst, D., van der Hout, R., Mimura, M. & Ohnishi, I. 2009 A mathematical study of the one-dimensional Keller and Rubinow model for Liesegang bands. J. Stat. Phys. 135, 107132.CrossRefGoogle Scholar
Homsy, G.M. 1987 Viscous fingering in porous media. Annu. Rev. Fluid Mech. 19 (1), 271311.CrossRefGoogle Scholar
Hopp-Hirschler, M., Shadloo, M.S. & Nieken, U. 2019 Viscous fingering phenomena in the early stage of polymer membrane formation. J. Fluid Mech. 864, 97140.CrossRefGoogle Scholar
Huggins, M.L. 1942 Some properties of solutions of long-chain compounds. J. Phys. Chem. 46 (1), 151158.CrossRefGoogle Scholar
Jasnow, D. & Vinals, J. 1996 Coarse-grained description of thermo-capillary flow. Phys. Fluids 8 (3), 660669.CrossRefGoogle Scholar
Kai, S. 1985 Spatial and temporal macroscopic structures in chemical reaction systems: patterns and interfacial motion. Sci. Form 1, 939.Google Scholar
Lamorgese, A.G. & Mauri, R. 2006 Mixing of macroscopically quiescent liquid mixtures. Phys. Fluids 18 (4), 044107.CrossRefGoogle Scholar
Lee, H.-G., Lowengrub, J.S. & Goodman, J. 2002 Modeling pinchoff and reconnection in a Hele-Shaw cell. I. The models and their calibration. Phys. Fluids 14 (2), 492513.CrossRefGoogle Scholar
Mishra, M., De Wit, A. & Sahu, K.C. 2012 Double diffusive effects on pressure-driven miscible displacement flows in a channel. J. Fluid Mech. 712, 579597.CrossRefGoogle Scholar
Mishra, M., Martin, M. & De Wit, A. 2008 Differences in miscible viscous fingering of finite width slices with positive or negative log-mobility ratio. Phys. Rev. E 78 (6), 066306.CrossRefGoogle ScholarPubMed
Molin, D. & Mauri, R. 2007 Enhanced heat transport during phase separation of liquid binary mixtures. Phys. Fluids 19 (7), 074102.CrossRefGoogle Scholar
Morita, K. 2013 Effect of distance from equilibrium on spontaneous deformation of droplet driven by Korteweg force. B. Eng. Report, Osaka University.Google Scholar
Nagatsu, Y., Ishii, Y., Tada, Y. & De Wit, A. 2014 Hydrodynamic fingering instability induced by a precipitation reaction. Phys. Rev. Lett. 113 (2), 024502.CrossRefGoogle ScholarPubMed
Nauman, E.B. & Balsara, N.P. 1989 Phase equilibria and the Landau–Ginzburg functional. Fluid Phase Equilib. 45 (2–3), 229250.CrossRefGoogle Scholar
Nauman, E.B. & He, D.Q. 1994 Morphology predictions for ternary polymer blends undergoing spinodal decomposition. Polymer 35 (11), 22432255.CrossRefGoogle Scholar
Norouzi, M., Dorrani, S., Shokri, H. & Bég, O.A. 2019 Effects of viscous dissipation on miscible thermo-viscous fingering instability in porous media. Intl J. Heat Mass Transfer 129, 212223.CrossRefGoogle Scholar
Ostwald, W. 1897 Studien über die Bildung und Umwandlung fester Körper. Z. Phys. Chem. 22 (1), 289330.CrossRefGoogle Scholar
Podgorski, T., Sostarecz, M.C., Zorman, S. & Belmonte, A. 2007 Fingering instabilities of a reactive micellar interface. Phys. Rev. E 76 (1), 016202.CrossRefGoogle ScholarPubMed
Pramanik, S. & Mishra, M. 2013 Linear stability analysis of Korteweg stresses effect on miscible viscous fingering in porous media. Phys. Fluids 25 (7), 074104.CrossRefGoogle Scholar
Pramanik, S. & Mishra, M. 2015 Nonlinear simulations of miscible viscous fingering with gradient stresses in porous media. Chem. Engng Sci. 122, 523532.CrossRefGoogle Scholar
Rácz, Z. 1999 Formation of liesegang patterns. Physica A 274 (1–2), 5059.CrossRefGoogle Scholar
Riolfo, L.A., Nagatsu, Y., Iwata, S., Maes, R., Trevelyan, P.M.J. & De Wit, A. 2012 Experimental evidence of reaction-driven miscible viscous fingering. Phys. Rev. E 85 (1), 015304.CrossRefGoogle ScholarPubMed
Seya, S., Suzuki, R.X., Nagatsu, Y., Ban, T. & Mishra, M. 2022 Numerical study on topological change of viscous fingering induced by a phase separation with Korteweg force. J. Fluid Mech. 938, A18.CrossRefGoogle Scholar
Suzuki, R.X., Nagatsu, Y., Mishra, M. & Ban, T. 2019 Fingering pattern induced by spinodal decomposition in hydrodynamically stable displacement in a partially miscible system. Phys. Rev. Fluids 4 (10), 104005.CrossRefGoogle Scholar
Suzuki, R.X., Nagatsu, Y., Mishra, M. & Ban, T. 2020 a Phase separation effects on a partially miscible viscous fingering dynamics. J. Fluid Mech. 898, A11.CrossRefGoogle Scholar
Suzuki, R.X., Quah, F.W., Ban, T., Mishra, M. & Nagatsu, Y. 2020 b Experimental study of miscible viscous fingering with different effective interfacial tension. AIP Adv. 10 (11), 115219.CrossRefGoogle Scholar
Suzuki, R.X., Tada, H., Hirano, S., Ban, T., Mishra, M., Takeda, R. & Nagatsu, Y. 2021 Anomalous patterns of Saffman–Taylor fingering instability during a metastable phase separation. Phys. Chem. Chem. Phys. 23 (18), 1092610935.CrossRefGoogle ScholarPubMed
Tan, C.T. & Homsy, G.M. 1986 Stability of miscible displacements in porous media: rectilinear flow. Phys. Fluids 29 (11), 35493556.CrossRefGoogle Scholar
Vladimirova, N., Malagoli, A. & Mauri, R. 1999 a Diffusiophoresis of two-dimensional liquid droplets in a phase-separating system. Phys. Rev. E 60 (2), 2037.CrossRefGoogle Scholar
Vladimirova, N., Malagoli, A. & Mauri, R. 1999 b Two-dimensional model of phase segregation in liquid binary mixtures. Phys. Rev. E 60 (6), 6968.CrossRefGoogle ScholarPubMed
Vorobev, A., Prokopev, S. & Lyubimova, T. 2021 Nonequilibrium capillary pressure of a miscible meniscus. Langmuir 37 (16), 48174826.CrossRefGoogle ScholarPubMed
Zhang, Y., Trabbic-Carlson, K., Albertorio, F., Chilkoti, A. & Cremer, P.S. 2006 Aqueous two-phase system formation kinetics for elastin-like polypeptides of varying chain length. Biomacromolecules 7 (7), 21922199.CrossRefGoogle ScholarPubMed
Zhou, B. & Powell, A.C. 2006 Phase field simulations of early stage structure formation during immersion precipitation of polymeric membranes in 2D and 3D. J. Membr. Sci. 268 (2), 150164.CrossRefGoogle Scholar