Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-27T16:49:52.246Z Has data issue: false hasContentIssue false

Frontiers in integrative structural modeling of macromolecular assemblies

Published online by Cambridge University Press:  22 January 2025

Kartik Majila
Affiliation:
National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore, India
Shreyas Arvindekar
Affiliation:
National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore, India
Muskaan Jindal
Affiliation:
National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore, India
Shruthi Viswanath*
Affiliation:
National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore, India
*
Corresponding author: Shruthi Viswanath; Email: shruthiv@ncbs.res.in
Rights & Permissions [Opens in a new window]

Abstract

Integrative modeling enables structure determination for large macromolecular assemblies by combining data from multiple experiments with theoretical and computational predictions. Recent advancements in AI-based structure prediction and cryo electron-microscopy have sparked renewed enthusiasm for integrative modeling; structures from AI-based methods can be integrated with in situ maps to characterize large assemblies. This approach previously allowed us and others to determine the architectures of diverse macromolecular assemblies, such as nuclear pore complexes, chromatin remodelers, and cell–cell junctions. Experimental data spanning several scales was used in these studies, ranging from high-resolution data, such as X-ray crystallography and AlphaFold structure, to low-resolution data, such as cryo-electron tomography maps and data from co-immunoprecipitation experiments. Two recurrent modeling challenges emerged across a range of studies. First, these assemblies contained significant fractions of disordered regions, necessitating the development of new methods for modeling disordered regions in the context of ordered regions. Second, methods needed to be developed to utilize the information from cryo-electron tomography, a timely challenge as structural biology is increasingly moving towards in situ characterization. Here, we recapitulate recent developments in the modeling of disordered proteins and the analysis of cryo-electron tomography data and highlight other opportunities for method development in the context of integrative modeling.

Type
Perspective
Creative Commons
Creative Common License - CCCreative Common License - BY
This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/licenses/by/4.0), which permits unrestricted re-use, distribution and reproduction, provided the original article is properly cited.
Copyright
© The Author(s), 2025. Published by Cambridge University Press

Introduction

Integrative structural modeling is an approach for determining macromolecular structures that are challenging to determine experimentally (Alber et al., Reference Alber, Dokudovskaya, Veenhoff, Zhang, Kipper, Devos, Suprapto, Karni-Schmidt, Williams, Chait, Rout and Sali2007; Sali, Glaeser, Earnest, & Baumeister, Reference Sali, Glaeser, Earnest and Baumeister2003). Data from multiple experiments is combined with physical principles, statistics of previous structures, and prior models for structure determination. This approach overcomes the limitations of individual techniques for structure determination and maximizes the accuracy, precision, completeness, and efficiency of structure determination (Rout & Sali, Reference Rout and Sali2019; Sali, Reference Sali2021).

Recent advancements in both computational and experimental domains have prompted a resurgence of interest in integrative modeling (Beck, Covino, Hänelt, & Müller-McNicoll, Reference Beck, Covino, Hänelt and Müller-McNicoll2024; McCafferty et al., Reference McCafferty, Klumpe, Amaro, Kukulski, Collinson and Engel2024). On the one hand, AI-based predictions of structures of proteins and their complexes with other proteins and nucleic acids have significantly advanced structural biology of late (Abramson et al., Reference Abramson, Adler, Dunger, Evans, Green, Pritzel, Ronneberger, Willmore, Ballard, Bambrick, Bodenstein, Evans, Hung, O’Neill, Reiman, Tunyasuvunakool, Wu, Žemgulytė, Arvaniti and Jumper2024; Akdel et al., Reference Akdel, Pires, Pardo, Jänes, Zalevsky, Mészáros, Bryant, Good, Laskowski, Pozzati, Shenoy, Zhu, Kundrotas, Serra, Rodrigues, Dunham, Burke, Borkakoti, Velankar and Beltrao2022; Jumper et al., Reference Jumper, Evans, Pritzel, Green, Figurnov, Ronneberger, Tunyasuvunakool, Bates, Žídek, Potapenko, Bridgland, Meyer, Kohl, Ballard, Cowie, Romera-Paredes, Nikolov, Jain, Adler and Hassabis2021). This has spurred the development of numerous methods that aim to integrate AI-based structures with diverse types of experimental data, including electron diffraction data from X-ray crystallography, electron density maps from electron cryo-microscopy, and chemical crosslinks from mass spectrometry (Chang et al., Reference Chang, Wang, Connolly, Meng, Su, Cvirkaite-Krupovic, Krupovic, Egelman and Si2022; Stahl et al., Reference Stahl, Warneke, Demann, Bremenkamp, Hormes, Brock, Stülke and Rappsilber2024; Stahl, Graziadei, Dau, Brock, & Rappsilber, Reference Stahl, Graziadei, Dau, Brock and Rappsilber2023; Terwilliger et al., Reference Terwilliger, Poon, Afonine, Schlicksup, Croll, Millán, Richardson, Read and Adams2022; Terwilliger et al., Reference Terwilliger, Afonine, Liebschner, Croll, McCoy, Oeffner, Williams, Poon, Richardson, Read and Adams2023; Zhang et al., Reference Zhang, Zhang, Kagaya, Terashi, Zhao, Xiong and Kihara2023). These methods integrate the data in various ways, ranging from using the data to validate AI-based predictions, to using the data as additional inputs in the deep learning method, to encoding the data in the loss functions, resulting in structure predictions that are consistent with the data (O’Reilly et al., Reference O’Reilly, Graziadei, Forbrig, Bremenkamp, Charles, Lenz, Elfmann, Fischer, Stülke and Rappsilber2023; Stahl et al., Reference Stahl, Graziadei, Dau, Brock and Rappsilber2023, Reference Stahl, Warneke, Demann, Bremenkamp, Hormes, Brock, Stülke and Rappsilber2024; Terwilliger et al., Reference Terwilliger, Poon, Afonine, Schlicksup, Croll, Millán, Richardson, Read and Adams2022, Reference Terwilliger, Afonine, Liebschner, Croll, McCoy, Oeffner, Williams, Poon, Richardson, Read and Adams2023; Zhang, Haghighatlari, et al., Reference Zhang, Zhang, Kagaya, Terashi, Zhao, Xiong and Kihara2023). On the other hand, experimental techniques for in situ structure determination of assemblies are also rapidly advancing, with advancements in both hardware and software for imaging cells using cryo-electron tomography (Beck et al., Reference Beck, Covino, Hänelt and Müller-McNicoll2024; McCafferty et al., Reference McCafferty, Klumpe, Amaro, Kukulski, Collinson and Engel2024). This has led to an increase in tomography data, concurrent with an increase in the number and resolution of structures solved using tomography. Together, integrative methods using cryo-electron tomography maps along with AI-based structure predictions have resulted in significant advancements in structure determination, for example for nuclear pore complexes and ciliary complexes (Chen et al., Reference Chen, Shiozaki, Haas, Skinner, Zhao, Guo, Polacco, Yu, Krogan, Lishko, Kaake, Vale and Agard2023; Fontana et al., Reference Fontana, Dong, Pi, Tong, Hecksel, Wang, Fu, Bustamante and Wu2022; Hesketh, Mukhopadhyay, Nakamura, Toropova, & Roberts, Reference Hesketh, Mukhopadhyay, Nakamura, Toropova and Roberts2022; McCafferty et al., Reference McCafferty, Klumpe, Amaro, Kukulski, Collinson and Engel2024; Mosalaganti et al., Reference Mosalaganti, Obarska-Kosinska, Siggel, Taniguchi, Turoňová, Zimmerli, Buczak, Schmidt, Margiotta, Mackmull, Hagen, Hummer, Kosinski and Beck2022; Zhu et al., Reference Zhu, Huang, Zeng, Zhan, Liang, Xu, Zhao, Wang, Wang, Zhou, Tao, Liu, Lei, Yan and Shi2022).

Nonetheless, there is immense potential for advancing integrative modeling methods for macromolecular assemblies. Here, we provide our perspective on two areas warranting immediate method development in the context of integrative modeling: methods for modeling intrinsically disordered regions (IDRs) of proteins and approaches for leveraging in situ data. First, unlike ordered proteins, intrinsically disordered proteins (IDPs) comprise a dynamic ensemble of conformations that are best characterized in statistical terms rather than as static structures (Baul, Chakraborty, Mugnai, Straub, & Thirumalai, Reference Baul, Chakraborty, Mugnai, Straub and Thirumalai2019). They comprise a significant fraction of the eukaryotic proteome and are involved in critical cellular processes (Oldfield & Dunker, Reference Oldfield and Dunker2014). They are found in several macromolecular assemblies, for example, the FG-Nups in the nuclear pore complex (Fontana et al., Reference Fontana, Dong, Pi, Tong, Hecksel, Wang, Fu, Bustamante and Wu2022; Zhu et al., Reference Zhu, Huang, Zeng, Zhan, Liang, Xu, Zhao, Wang, Wang, Zhou, Tao, Liu, Lei, Yan and Shi2022). However, their intrinsic disorder makes their characterization in these assemblies challenging. Improved representations for IDPs and methods for generating realistic IDP ensembles are crucial for understanding their functions. Second, the structural characterization of macromolecules using in situ data relies on accurate particle annotations on the tomograms (de Teresa-Trueba et al., Reference de Teresa-Trueba, Goetz, Mattausch, Stojanovska, Zimmerli, Toro-Nahuelpan, Cheng, Tollervey, Pape, Beck, Diz-Muñoz, Kreshuk, Mahamid and Zaugg2023; Rice et al., Reference Rice, Wagner, Stabrin, Sitsel, Prumbaum and Raunser2023). However, owing to the low signal-to-noise ratio of the acquired tilt images, the missing wedge effect, and the inherent heterogeneity in the sample, the localization and identification of macromolecules in tomograms is time-consuming, laborious, and often challenging (de Teresa-Trueba et al., Reference de Teresa-Trueba, Goetz, Mattausch, Stojanovska, Zimmerli, Toro-Nahuelpan, Cheng, Tollervey, Pape, Beck, Diz-Muñoz, Kreshuk, Mahamid and Zaugg2023; Moebel et al., Reference Moebel, Martinez-Sanchez, Lamm, Righetto, Wietrzynski, Albert, Larivière, Fourmentin, Pfeffer, Ortiz, Baumeister, Peng, Engel and Kervrann2021). Advances in deep learning methods and integrative approaches for combining data from other experimental and computational methods with cryo-electron tomograms can facilitate high throughput in situ structural characterization of macromolecular species.

In this Perspective, we first briefly review the existing integrative modeling methods and recent examples of macromolecular assemblies characterized using integrative modeling. Then, we discuss methods developed and opportunities for modeling disordered regions and leveraging in situ data. Finally, we end with an outlook summarizing other open problems in integrative modeling.

Integrative modeling methods

Several methods have been developed for integrative structure determination (Table 1). A subset of these including Integrative Modeling Platform (IMP), High Ambiguity Driven DOCKing (HADDOCK), and Assembline (Alber et al., Reference Alber, Dokudovskaya, Veenhoff, Zhang, Kipper, Devos, Suprapto, Karni-Schmidt, Williams, Chait, Rout and Sali2007; Dominguez, Boelens, & Bonvin, Reference Dominguez, Boelens and Bonvin2003; Honorato et al., Reference Honorato, Trellet, Jiménez-García, Schaarschmidt, Giulini, Reys, Koukos, Rodrigues, Karaca, Van Zundert, Roel-Touris, Van Noort, Jandová, Melquiond and Bonvin2024; Rantos, Karius, & Kosinski, Reference Rantos, Karius and Kosinski2022; Russel et al., Reference Russel, Lasker, Webb, Velázquez-Muriel, Tjioe, Schneidman-Duhovny, Peterson and Sali2012) are discussed here. IMP is a framework for Bayesian integrative modeling that facilitates structure determination of macromolecular ensembles at multiple resolutions (multi-scale) and multiple states (multi-state) (Alber et al., Reference Alber, Dokudovskaya, Veenhoff, Zhang, Kipper, Devos, Suprapto, Karni-Schmidt, Williams, Chait, Rout and Sali2007; Russel et al., Reference Russel, Lasker, Webb, Velázquez-Muriel, Tjioe, Schneidman-Duhovny, Peterson and Sali2012). A wide array of experimental data can be combined using IMP, for example in vivo genetic interactions, co-immunoprecipitation, FRET (Förster Resonance Energy Transfer), SAXS (small angle X-ray scattering), XLMS (chemical crosslinks from mass spectrometry), density maps from cryo electron-microscopy, and atomic structures from X-ray crystallography, NMR (Nuclear Magnetic Resonance), and AI-based predictions (Rout & Sali, Reference Rout and Sali2019; Sali, Reference Sali2021). The Bayesian inference framework allows for data from multiple sources to be integrated while considering the uncertainty in the data (Schneidman-Duhovny, Pellarin, & Sali, Reference Schneidman-Duhovny, Pellarin and Sali2014). The modular design of IMP facilitates the mixing and matching of scoring functions and sampling algorithms. It has been used in the modeling of several large assemblies, most notably the nuclear pore complex (Akey et al., Reference Akey, Singh, Ouch, Echeverria, Nudelman, Varberg, Yu, Fang, Shi, Wang, Salzberg, Song, Xu, Gumbart, Suslov, Unruh, Jaspersen, Chait, Sali and Rout2022; Alber et al., Reference Alber, Dokudovskaya, Veenhoff, Zhang, Kipper, Devos, Suprapto, Karni-Schmidt, Williams, Chait, Rout and Sali2007; Rout & Sali, Reference Rout and Sali2019; Sali, Reference Sali2021; Singh et al., Reference Singh, Soni, Hutchings, Echeverria, Shaikh, Duquette, Suslov, Li, Van Eeuwen, Molloy, Shi, Wang, Guo, Chait, Fernandez-Martinez, Rout, Sali and Villa2024). Recent advancements in IMP include Bayesian scoring functions for in vivo genetic interactions (Braberg et al., Reference Braberg, Echeverria, Bohn, Cimermancic, Shiver, Alexander, Xu, Shales, Dronamraju, Jiang, Dwivedi, Bogdanoff, Chaung, Hüttenhain, Wang, Mavor, Pellarin, Schneidman, Bader and Krogan2020), Bayesian model selection for optimizing model representation (Arvindekar, Pathak, Majila, & Viswanath, Reference Arvindekar, Pathak, Majila and Viswanath2024), automated choice of sampling parameters (Pasani & Viswanath, Reference Pasani and Viswanath2021), and annotation of precision for model regions (Ullanat, Kasukurthi, & Viswanath, Reference Ullanat, Kasukurthi and Viswanath2022).

Table 1. Integrative modeling software

A list of commonly used integrative modeling software for large protein complexes. Each of these combines information from three or more experimental and/or computational sources. For a comprehensive overview, see (Bonomi et al., Reference Bonomi, Heller, Camilloni and Vendruscolo2017; Habeck, Reference Habeck2023; Rout & Sali, Reference Rout and Sali2019)

Assembline is a protocol for integrative modeling that builds upon IMP, combining Xlink Analyzer, UCSF Chimera, and IMP to model large assemblies (Rantos et al., Reference Rantos, Karius and Kosinski2022). It is applicable for systems for which medium-resolution EM maps and a large number of atomic structures of subunits are available. It improves upon IMP by using pre-computed rigid body fits to EM maps to make the sampling more efficient. HADDOCK is a method for atomistic integrative modeling of protein complexes (Dominguez et al., Reference Dominguez, Boelens and Bonvin2003; Honorato et al., Reference Honorato, Trellet, Jiménez-García, Schaarschmidt, Giulini, Reys, Koukos, Rodrigues, Karaca, Van Zundert, Roel-Touris, Van Noort, Jandová, Melquiond and Bonvin2024). Experimental data from NMR, SAXS, XLMS, and mutagenesis studies are encoded as Ambiguous Interaction Restraints (AIR). Recent improvements to HADDOCK include the ability to model complexes of up to 20 macromolecules, new restraints based on cryo-EM maps, coarse-grained representations for efficient sampling, customizable pre- and post-processing steps, and a user-friendly web server for integrative modeling (Honorato et al., Reference Honorato, Trellet, Jiménez-García, Schaarschmidt, Giulini, Reys, Koukos, Rodrigues, Karaca, Van Zundert, Roel-Touris, Van Noort, Jandová, Melquiond and Bonvin2024).

Other than these, several methods allow fitting known protein structures into medium to low-resolution density maps, including MDFF and TEMPy-REFF (Beton, Mulvaney, Cragnolini, & Topf, Reference Beton, Mulvaney, Cragnolini and Topf2024; Trabuco, Villa, Mitra, Frank, & Schulten, Reference Trabuco, Villa, Mitra, Frank and Schulten2008). MDFF (Molecular dynamics flexible fitting) utilizes MD simulations for fitting structures into density maps by biasing the simulation using an additional potential derived from the density map (Trabuco et al., Reference Trabuco, Villa, Mitra, Frank and Schulten2008). TEMPy-REFF (Responsibility-based Flexible-Fitting) refines an initial structure within a density map iteratively using the Expectation-Maximization algorithm (Beton et al., Reference Beton, Mulvaney, Cragnolini and Topf2024).

Recent examples in integrative modeling: focus on nuclear and cell adhesion complexes

Integrative modeling has shed light on diverse cellular processes by determining the structures of assemblies associated with them. A list of representative recently characterized integrative structures is presented (Table 2). Here, we discuss examples of recent integrative structural biology studies in nuclear trafficking, gene expression regulation, and cell–cell adhesion. These studies not only provide novel insights into the structure and function of these assemblies but also highlight areas for future applications and method development.

Table 2. A table summarizing a representative subset of recent integrative modeling studies

Abbreviations: DIA-MS, Data independent acquisition mass spectrometry; EM, Electron microscopy; ET, Electron tomography; NMR, Nuclear magnetic resonance; NS, Negative staining; SEC-MALLS, Size exclusion chromatography—multi-angle laser light scattering; XLMS, Crosslinking coupled with mass spectrometry.

The nuclear pore complex (NPC) is a large macromolecular assembly in the nuclear envelope that connects the nucleus and cytoplasm and plays an important role in nuclear trafficking (Akey et al., Reference Akey, Singh, Ouch, Echeverria, Nudelman, Varberg, Yu, Fang, Shi, Wang, Salzberg, Song, Xu, Gumbart, Suslov, Unruh, Jaspersen, Chait, Sali and Rout2022; Alber et al., Reference Alber, Dokudovskaya, Veenhoff, Zhang, Kipper, Devos, Suprapto, Karni-Schmidt, Williams, Chait, Rout and Sali2007). Several recent studies have improved our understanding of the components of the NPC (Bley et al., Reference Bley, Nie, Mobbs, Petrovic, Gres, Liu, Mukherjee, Harvey, Huber, Lin, Brown, Tang, Rundlet, Correia, Chen, Regmi, Stevens, Jette, Dasso and Hoelz2022; Fontana et al., Reference Fontana, Dong, Pi, Tong, Hecksel, Wang, Fu, Bustamante and Wu2022; Singh et al., Reference Singh, Soni, Hutchings, Echeverria, Shaikh, Duquette, Suslov, Li, Van Eeuwen, Molloy, Shi, Wang, Guo, Chait, Fernandez-Martinez, Rout, Sali and Villa2024; Yu et al., Reference Yu, Heidari, Mikhaleva, Tan, Mingu, Ruan, Reinkemeier, Obarska-Kosinska, Siggel, Beck, Hummer and Lemke2023; Zhu et al., Reference Zhu, Huang, Zeng, Zhan, Liang, Xu, Zhao, Wang, Wang, Zhou, Tao, Liu, Lei, Yan and Shi2022). Some of these studies involve the fitting of AlphaFold and experimentally determined structures into medium-resolution cryo-EM maps and cryo-electron tomograms (Bley et al., Reference Bley, Nie, Mobbs, Petrovic, Gres, Liu, Mukherjee, Harvey, Huber, Lin, Brown, Tang, Rundlet, Correia, Chen, Regmi, Stevens, Jette, Dasso and Hoelz2022; Fontana et al., Reference Fontana, Dong, Pi, Tong, Hecksel, Wang, Fu, Bustamante and Wu2022; Petrovic et al., Reference Petrovic, Samanta, Perriches, Bley, Thierbach, Brown, Nie, Mobbs, Stevens, Liu, Tomaleri, Schaus and Hoelz2022; Zhu et al., Reference Zhu, Huang, Zeng, Zhan, Liang, Xu, Zhao, Wang, Wang, Zhou, Tao, Liu, Lei, Yan and Shi2022). Other studies additionally incorporate biochemical data including chemical crosslinks (Singh et al., Reference Singh, Soni, Hutchings, Echeverria, Shaikh, Duquette, Suslov, Li, Van Eeuwen, Molloy, Shi, Wang, Guo, Chait, Fernandez-Martinez, Rout, Sali and Villa2024). Together these studies have been used to characterize the structures of the cytoplasmic face, cytoplasmic ring, the linker-scaffold network, and the nuclear basket of the NPC. The resulting structures enabled the identification of novel interfaces between disordered nucleoporins (Nups) (Fontana et al., Reference Fontana, Dong, Pi, Tong, Hecksel, Wang, Fu, Bustamante and Wu2022; Zhu et al., Reference Zhu, Huang, Zeng, Zhan, Liang, Xu, Zhao, Wang, Wang, Zhou, Tao, Liu, Lei, Yan and Shi2022), elucidated the function of nucleoporins—Nup38 and the Cytoplasmic Filament Nucleoporin (CFNC) (Bley et al., Reference Bley, Nie, Mobbs, Petrovic, Gres, Liu, Mukherjee, Harvey, Huber, Lin, Brown, Tang, Rundlet, Correia, Chen, Regmi, Stevens, Jette, Dasso and Hoelz2022), delineated the role of Mlp/Trp in assisting mRNP transport (Bley et al., Reference Bley, Nie, Mobbs, Petrovic, Gres, Liu, Mukherjee, Harvey, Huber, Lin, Brown, Tang, Rundlet, Correia, Chen, Regmi, Stevens, Jette, Dasso and Hoelz2022; Fontana et al., Reference Fontana, Dong, Pi, Tong, Hecksel, Wang, Fu, Bustamante and Wu2022; Singh et al., Reference Singh, Soni, Hutchings, Echeverria, Shaikh, Duquette, Suslov, Li, Van Eeuwen, Molloy, Shi, Wang, Guo, Chait, Fernandez-Martinez, Rout, Sali and Villa2024; Yu et al., Reference Yu, Heidari, Mikhaleva, Tan, Mingu, Ruan, Reinkemeier, Obarska-Kosinska, Siggel, Beck, Hummer and Lemke2023; Zhu et al., Reference Zhu, Huang, Zeng, Zhan, Liang, Xu, Zhao, Wang, Wang, Zhou, Tao, Liu, Lei, Yan and Shi2022), and revealed the plasticity and robustness of the inner ring (Petrovic et al., Reference Petrovic, Samanta, Perriches, Bley, Thierbach, Brown, Nie, Mobbs, Stevens, Liu, Tomaleri, Schaus and Hoelz2022). Finally, another study determined the distribution of intrinsically disordered nucleoporins in the NPC and their motion in the central channel using fluorescence lifetime imaging of fluorescence resonance energy transfer (FLIM-FRET) and coarse-grained molecular dynamic (MD) simulations (Yu et al., Reference Yu, Heidari, Mikhaleva, Tan, Mingu, Ruan, Reinkemeier, Obarska-Kosinska, Siggel, Beck, Hummer and Lemke2023).

Whereas the above studies are on components of the NPC, (Akey et al., Reference Akey, Singh, Ouch, Echeverria, Nudelman, Varberg, Yu, Fang, Shi, Wang, Salzberg, Song, Xu, Gumbart, Suslov, Unruh, Jaspersen, Chait, Sali and Rout2022, Reference Akey, Echeverria, Ouch, Nudelman, Shi, Wang, Chait, Sali, Fernandez-Martinez and Rout2023; Mosalaganti et al., Reference Mosalaganti, Obarska-Kosinska, Siggel, Taniguchi, Turoňová, Zimmerli, Buczak, Schmidt, Margiotta, Mackmull, Hagen, Hummer, Kosinski and Beck2022) determined comprehensive integrative structures of the entire NPC. These studies integrate in situ cryo-electron tomography data with AlphaFold or experimentally determined structures (Mosalaganti et al., Reference Mosalaganti, Obarska-Kosinska, Siggel, Taniguchi, Turoňová, Zimmerli, Buczak, Schmidt, Margiotta, Mackmull, Hagen, Hummer, Kosinski and Beck2022), and additionally cryo-EM maps, chemical crosslinks, and data from quantitative fluorescence imaging and biochemical studies to determine comprehensive structures of NPCs (Akey et al., Reference Akey, Singh, Ouch, Echeverria, Nudelman, Varberg, Yu, Fang, Shi, Wang, Salzberg, Song, Xu, Gumbart, Suslov, Unruh, Jaspersen, Chait, Sali and Rout2022, Reference Akey, Echeverria, Ouch, Nudelman, Shi, Wang, Chait, Sali, Fernandez-Martinez and Rout2023). The structures revealed distinct dilated and constricted states of the complex and characterized the plasticity of the pore (Akey et al., Reference Akey, Singh, Ouch, Echeverria, Nudelman, Varberg, Yu, Fang, Shi, Wang, Salzberg, Song, Xu, Gumbart, Suslov, Unruh, Jaspersen, Chait, Sali and Rout2022, Reference Akey, Echeverria, Ouch, Nudelman, Shi, Wang, Chait, Sali, Fernandez-Martinez and Rout2023; Mosalaganti et al., Reference Mosalaganti, Obarska-Kosinska, Siggel, Taniguchi, Turoňová, Zimmerli, Buczak, Schmidt, Margiotta, Mackmull, Hagen, Hummer, Kosinski and Beck2022). Additionally, they localized precise anchoring sites for the intrinsically disordered Nups (Mosalaganti et al., Reference Mosalaganti, Obarska-Kosinska, Siggel, Taniguchi, Turoňová, Zimmerli, Buczak, Schmidt, Margiotta, Mackmull, Hagen, Hummer, Kosinski and Beck2022) and delineated the function of Pom153 in ring dilation (Akey et al., Reference Akey, Echeverria, Ouch, Nudelman, Shi, Wang, Chait, Sali, Fernandez-Martinez and Rout2023).

The Nucleosome Remodeling and Deacetylase (NuRD) complex is a chromatin remodifying assembly that plays an important role in several cellular processes including transcriptional regulation, cell cycle progression, and cellular differentiation (Arvindekar et al., Reference Arvindekar, Jackman, Low, Landsberg, Mackay and Viswanath2022). It consists of chromatin remodeling and deacetylase modules, connected by MBD and GATAD2 proteins. The structures of three subcomplexes of NuRD were determined by integrating data from negative-stain and low-resolution cryo-EM maps, X-ray crystallography, XLMS, SEC-MALS, DIA-MS, NMR spectroscopy, homology modeling, secondary structure predictions, and physical principles (Arvindekar et al., Reference Arvindekar, Jackman, Low, Landsberg, Mackay and Viswanath2022). The integrative structures depict MBD in two states in NuRD and elucidate the role of the intrinsically disordered region of MBD in bridging the chromatin remodeling and deacetylase modules of NuRD.

Desmosomes are intercellular junctions that tether the intermediate filaments of adjacent cells in tissues under mechanical stress (Pasani, Menon, & Viswanath, Reference Pasani, Menon and Viswanath2024). The integrative structure of the desmosomal outer dense plaque (ODP) was determined by combining data from cryo-electron tomography, X-ray crystallography, immuno-electron microscopy, in vitro overlay, in vivo co-localization assays, Yeast Two-Hybrid (Y2H), co-immuno precipitation, in- silico sequence-based predictions of transmembrane and disordered regions, homology modeling, and stereochemistry (Pasani et al., Reference Pasani, Menon and Viswanath2024). The structure enabled the localization of disordered regions of Plakophilin (PKP) and Plakoglobin (PG) and the identification of novel protein–protein interfaces associated with them, leading to hypotheses about the functions of these disordered regions.

Two elements emerge as common across the aforementioned studies: they leverage in situ cryo-electron tomography data and the characterized systems contain significant fractions of disordered regions (Figure 1). This highlights two areas of immediate interest for method development: modeling with intrinsically disordered proteins (IDP) and utilizing data from cryo-electron tomography (cryo-TM), discussed in the following sections.

Figure 1. Frontiers in integrative structure determination. Schematic describing integrative structure determination for the nucleosome remodeling and deacetylase complex (orange box) and the desmosomal outer dense plaque (green box) combining data from multiple sources. Input low-resolution cryo-EM and cryo-ET maps and intrinsically disordered regions in both complexes are highlighted in yellow.

Integrative modeling of intrinsically disordered proteins

Intrinsically disordered proteins (IDPs) are a class of proteins that lack a well-defined ordered structure in their monomeric state. Rather, they exist as an ensemble of interconverting conformers in equilibrium and hence are structurally heterogeneous (Baul et al., Reference Baul, Chakraborty, Mugnai, Straub and Thirumalai2019; Lindorff-Larsen & Kragelund, Reference Lindorff-Larsen and Kragelund2021). This heterogeneity of IDPs also makes it challenging to characterize them both experimentally and computationally (Beck et al., Reference Beck, Covino, Hänelt and Müller-McNicoll2024).

Learning Representations for IDPs

Recently, protein language models (pLMs) have emerged as powerful tools for learning context-aware representations, providing a compact and informative approach to characterize the structural and functional properties of proteins (Bepler & Berger, Reference Bepler and Berger2021; Rives et al., Reference Rives, Meier, Sercu, Goyal, Lin, Liu, Guo, Ott, Zitnick, Ma and Fergus2021). pLMs enhance the performance of models on downstream tasks via transfer learning, eliminating the need to train a neural network from end to end. This approach is particularly beneficial while training models with small datasets.

Using pLMs for IDPs presents several challenges. First, pLMs trained only on sequences may not be able to capture the conformational heterogeneity of IDPs. Second, the databases used to train pLMs are dominated by ordered protein sequences, leading to a bias in the learned representations. Third, IDPs often function through transient interactions and context-dependent conformations, i.e., the same IDP may adopt different conformations with different binding partners. The state-of-the-art pLMs do not account for the environmental context and interacting partners and thus may not capture these transient interactions. Finally, the lack of structural data representative of IDP conformations poses a significant challenge in training models.

Advances in representation learning techniques are required for accurately characterizing the behavior of IDPs. Representations for IDPs could be improved by fine-tuning existing pLMs on IDP-specific tasks and/or by incorporating additional data on IDPs. Sequence alone might not be sufficient to capture the properties of IDPs; incorporating structural information or physics-based priors might allow pLMs to capture the complex dynamics of IDPs (Wang, Wang, Evans, & Tiwary, Reference Wang, Wang, Evans and Tiwary2024). Structure-aware pLMs have been recently developed (Peñaherrera & Koes, Reference Peñaherrera and Koes2024; Sun & Shen, Reference Sun and Shen2023; Wang et al., Reference Wang, Wang, Evans and Tiwary2024). The same approach can be extended to IDPs. There is a need to obtain more structural data for IDPs (Jahn, Marquet, Heinzinger, & Rost, Reference Jahn, Marquet, Heinzinger and Rost2024). Whereas, experimental structural data remains important, acquiring it might be tedious and time-consuming. Computational approaches for generating realistic IDP conformational ensembles, such as MD simulations and generative models, would provide valuable experimental-like structural data. In the next section, we discuss methods for generating IDP ensembles.

Generating IDP ensembles

Determining the conformational ensembles of IDPs is essential for understanding their functions. MD simulations are widely used for generating conformational ensembles. However, their reliability depends on the accuracy of force fields and the ergodicity of sampling (Bonomi, Heller, Camilloni, & Vendruscolo, Reference Bonomi, Heller, Camilloni and Vendruscolo2017; Robustelli, Piana, & Shaw, Reference Robustelli, Piana and Shaw2018). Force fields typically used for folded proteins often fail to accurately capture the conformations of IDPs when compared with experimental data. Efforts for improving the force fields for IDPs focus on either refining the protein force field (Baul et al., Reference Baul, Chakraborty, Mugnai, Straub and Thirumalai2019; Huang et al., Reference Huang, Rauscher, Nawrocki, Ran, Feig, de Groot, Grubmüller and MacKerell2017; Joseph et al., Reference Joseph, Reinhardt, Aguirre, Chew, Russell, Espinosa, Garaizar and Collepardo-Guevara2021), or accurately accounting for protein-water interactions (Best, Zheng, & Mittal, Reference Best, Zheng and Mittal2014; Nerenberg, Jo, So, Tripathy, & Head-Gordon, Reference Nerenberg, Jo, So, Tripathy and Head-Gordon2012; Robustelli et al., Reference Robustelli, Piana and Shaw2018; Vitalis & Pappu, Reference Vitalis and Pappu2009). Coarse-grained models that improve sampling by reducing the degrees of freedom have also been developed (Baratam & Srivastava, Reference Baratam and Srivastava2024; Baul et al., Reference Baul, Chakraborty, Mugnai, Straub and Thirumalai2019; Joseph et al., Reference Joseph, Reinhardt, Aguirre, Chew, Russell, Espinosa, Garaizar and Collepardo-Guevara2021; Marrink, Risselada, Yefimov, Tieleman, & de Vries, Reference Marrink, Risselada, Yefimov, Tieleman and de Vries2007; Thomasen, Pesce, Roesgaard, Tesei, & Lindorff-Larsen, Reference Thomasen, Pesce, Roesgaard, Tesei and Lindorff-Larsen2022).

Deep generative models offer a computationally efficient means for sampling conformations from a learned data distribution. Latent space embeddings from variational autoencoder (VAE) trained on IDP sequences (Mansoor, Baek, Park, Lee, & Baker, Reference Mansoor, Baek, Park, Lee and Baker2024), conditional generative adversarial networks (GAN) (Janson, Valdes-Garcia, Heo, & Feig, Reference Janson, Valdes-Garcia, Heo and Feig2023), denoising diffusion probabilistic models (DDPM) (Janson & Feig, Reference Janson and Feig2024; Zhu et al., Reference Zhu, Li, Zhang, Zheng, Zhong, Bai, Wang, Wei, Yang and Chen2024) have been used for generating all-atom and Cα coarse-grained ensembles of IDPs. More sophisticated approaches such as flow matching may also be employed for generating ensembles of IDPs. Notably, these aforementioned generative models leverage MD-generated ensembles for training.

Recent studies demonstrate the combined use of MD simulations and machine learning approaches to generate IDP conformers with the aim of predicting the biophysical properties of IDPs and designing IDP sequences (Lotthammer, Ginell, Griffith, Emenecker, & Holehouse, Reference Lotthammer, Ginell, Griffith, Emenecker and Holehouse2024; Pesce et al., Reference Pesce, Bremer, Tesei, Hopkins, Grace, Mittag and Lindorff-Larsen2024; Tesei et al., Reference Tesei, Trolle, Jonsson, Betz, Knudsen, Pesce, Johansson and Lindorff-Larsen2024). For example, the ALBATROSS deep learning model was developed for predicting the biophysical properties of IDPs, such as the radius of gyration, by training on IDP ensembles generated via the MPIPI-GG model (Lotthammer et al., Reference Lotthammer, Ginell, Griffith, Emenecker and Holehouse2024). Similarly, support vector regression models were trained to predict chain compaction for IDP sequences using IDP ensembles generated by the CALVADOS model (Tesei et al., Reference Tesei, Trolle, Jonsson, Betz, Knudsen, Pesce, Johansson and Lindorff-Larsen2024). Lastly, a method for designing IDP sequences with pre-defined conformational properties was developed by combining ensemble generation using CALVADOS with alchemical free-energy calculations within a Markov Chain Monte Carlo (MCMC) optimization framework (Pesce et al., Reference Pesce, Bremer, Tesei, Hopkins, Grace, Mittag and Lindorff-Larsen2024).

Integrating experimental data for generating IDP ensembles

Broadly, experimental data can be utilized for modeling IDPs in several ways: validation of generated ensembles, reweighting generated ensembles using experimental data, incorporating experimental data as restraints for sampling conformations, or using experimental data to improve existing force fields (Bernetti & Bussi, Reference Bernetti and Bussi2023; Chan-Yao-Chong, Durand, & Ha-Duong, Reference Chan-Yao-Chong, Durand and Ha-Duong2019; Fisher & Stultz, Reference Fisher and Stultz2011). A comprehensive list of methods can be found in reviews on this topic (Bonomi et al., Reference Bonomi, Heller, Camilloni and Vendruscolo2017; Habeck, Reference Habeck2023).

First, ensemble validation involves generating realistic ensembles of IDPs and validating the results with experimental data (Chan-Yao-Chong et al., Reference Chan-Yao-Chong, Durand and Ha-Duong2019). Due to their ability to capture the dynamics of IDPs, NMR, and SAS data are most commonly used for validating the generated ensembles for IDPs (Baratam & Srivastava, Reference Baratam and Srivastava2024; Shrestha, Smith, & Petridis, Reference Shrestha, Smith and Petridis2021). Second, ensemble weighting involves using experimental data to refine an existing ensemble, to minimize deviation of the ensemble from the observed data (Chan-Yao-Chong et al., Reference Chan-Yao-Chong, Durand and Ha-Duong2019). This can be achieved by maximum parsimony (SES Berlin et al., Reference Berlin, Castañeda, Schneidman-Duhovny, Sali, Nava-Tudela and Fushman2013) or maximum entropy (Pitera & Chodera, Reference Pitera and Chodera2012; Roux & Weare, Reference Roux and Weare2013; Cavalli, Camilloni, & Vendruscolo, Reference Cavalli, Camilloni and Vendruscolo2013) (EROS Różycki, Kim, & Hummer, Reference Różycki, Kim and Hummer2011, (BioEn Hummer & Köfinger, Reference Hummer and Köfinger2015), and ABSURD (Salvi, Abyzov, & Blackledge, Reference Salvi, Abyzov and Blackledge2016). Bayesian inference methods allow consideration of uncertainty in data (Fisher, Ullman, & Stultz, Reference Fisher, Ullman and Stultz2013; Lincoff et al., Reference Lincoff, Haghighatlari, Krzeminski, Teixeira, Gomes, Gradinaru, Forman-Kay and Head-Gordon2020). Combining Bayesian inference and maximum entropy methods helps overcome the limitations of each (Crehuet, Buigues, Salvatella, & Lindorff-Larsen, Reference Crehuet, Buigues, Salvatella and Lindorff-Larsen2019; Fröhlking, Bernetti, & Bussi, Reference Fröhlking, Bernetti and Bussi2023). Deep learning models in combination with Bayesian and maximum entropy methods can also be used for refining an initial pool of conformations (DynamICE: Zhang, Haghighatlari, et al., Reference Zhang, Haghighatlari, Li, Liu, Namini, Teixeira, Forman-Kay and Head-Gordon2023). Third, experimental data can also be used as restraints to guide simulations (Chan-Yao-Chong et al., Reference Chan-Yao-Chong, Durand and Ha-Duong2019). Metainference uses Bayesian inference for incorporating noisy, ensemble-averaged experimental data using replica-averaged modeling (Bonomi, Camilloni, Cavalli, & Vendruscolo, Reference Bonomi, Camilloni, Cavalli and Vendruscolo2016; Bonomi, Camilloni, & Vendruscolo, Reference Bonomi, Camilloni and Vendruscolo2016). Similarly, parallel replica ensemble restraints based on SAXS data were used in MD simulations of IDPs (Hermann & Hub, Reference Hermann and Hub2019). Finally, experimental data can also be used for improving existing force fields on the fly using a Maximum Entropy approach (Cesari, Gil-Ley, & Bussi, Reference Cesari, Gil-Ley and Bussi2016).

A holistic understanding of the dynamic behavior of IDPs requires realistic conformational ensembles that can be generated using MD simulations and deep generative models. MD simulations can provide experimental-like ensembles for training deep generative models; the latter may aid in improving force fields, enhancing sampling of IDP conformations, and analyzing the ensemble generated via MD. Thus, an integrated approach would enable overcoming the limitations of each and improving our understanding of the dynamic nature of IDPs.

Integrative structure determination using in situ data

Cryo-electron tomography (cryo-ET) is a cryo-EM imaging technique that enables structural characterization of macromolecular species (macromolecules, their complexes, and assemblies), in their native cellular environment at nanometer resolution (Gubins et al., Reference Gubins, Chaillet, van der Schot, Veltkamp, Förster, Hao, Wan, Cui, Zhang, Moebel, Wang, Kihara, Zeng, Xu, Nguyen, White and Bunyak2020; Lamm et al., Reference Lamm, Righetto, Wietrzynski, Pöge, Martinez-Sanchez, Peng and Engel2022). High-throughput localization and identification of macromolecular species within a tomogram can provide insights into their conformational heterogeneity, potential interactors, counts, and distributions within the cell (Arvindekar, Majila, & Viswanath, Reference Arvindekar, Majila and Viswanath2024; Beck et al., Reference Beck, Covino, Hänelt and Müller-McNicoll2024; Förster, Han, & Beck, Reference Förster, Han, Beck and Jensen2010; McCafferty et al., Reference McCafferty, Klumpe, Amaro, Kukulski, Collinson and Engel2024). Integrating cryo-ET data along with complementary data from experiments such as XLMS, Y2H, cryo-EM Single Particle Analysis (SPA), FRET, AI-based structure predictions, and prior structural models can help build a comprehensive structural atlas of the cell (Beck et al., Reference Beck, Covino, Hänelt and Müller-McNicoll2024; Förster et al., Reference Förster, Han, Beck and Jensen2010; McCafferty et al., Reference McCafferty, Klumpe, Amaro, Kukulski, Collinson and Engel2024). However, the intracellular crowding, compositional heterogeneity and low copy numbers of macromolecular species, the low signal-to-noise ratio, and the missing wedge in the tomography data pose significant challenges for localizing and identifying macromolecules in the tomograms (Moebel et al., Reference Moebel, Martinez-Sanchez, Lamm, Righetto, Wietrzynski, Albert, Larivière, Fourmentin, Pfeffer, Ortiz, Baumeister, Peng, Engel and Kervrann2021; Pyle & Zanetti, Reference Pyle and Zanetti2021).

Localization and identification of macromolecular species with known structures

Macromolecular species with known structures are often annotated in tomograms either manually or by template matching. Manual particle annotation, however, is time-consuming, laborious, error-prone, and not suitable for high-throughput workflows (Lamm et al., Reference Lamm, Righetto, Wietrzynski, Pöge, Martinez-Sanchez, Peng and Engel2022). Template matching involves using a low-pass filtered template of the known structure of a target macromolecule to localize similar densities in the tomogram (Frangakis et al., Reference Frangakis, Böhm, Förster, Nickell, Nicastro, Typke, Hegerl and Baumeister2002). Methods for template matching are under active development (Cruz-León et al., Reference Cruz-León, Majtner, Hoffmann, Kreysing, Kehl, Tuijtel, Schaefer, Geißler, Beck, Turoňová and Hummer2024; Maurer, Siggel, & Kosinski, Reference Maurer, Siggel and Kosinski2024). For example, the use of high-resolution information and template-specific search parameter optimization for objective, comprehensive, and high-confidence localization and identification of macromolecular species in tomograms was recently proposed (Cruz-León et al., Reference Cruz-León, Majtner, Hoffmann, Kreysing, Kehl, Tuijtel, Schaefer, Geißler, Beck, Turoňová and Hummer2024).

In addition to template matching, several supervised learning methods have also been recently developed. Two such deep learning-based methods, DeepFinder and DeePiCt, utilize convolutional neural networks (CNNs) for simultaneous localization and identification of macromolecular species (de Teresa-Trueba et al., Reference de Teresa-Trueba, Goetz, Mattausch, Stojanovska, Zimmerli, Toro-Nahuelpan, Cheng, Tollervey, Pape, Beck, Diz-Muñoz, Kreshuk, Mahamid and Zaugg2023; Moebel et al., Reference Moebel, Martinez-Sanchez, Lamm, Righetto, Wietrzynski, Albert, Larivière, Fourmentin, Pfeffer, Ortiz, Baumeister, Peng, Engel and Kervrann2021). Another deep learning-based object detection method, MemBrain, was developed for estimating the localizations and orientations of membrane-embedded macromolecules (Lamm et al., Reference Lamm, Righetto, Wietrzynski, Pöge, Martinez-Sanchez, Peng and Engel2022, Reference Lamm, Zufferey, Righetto, Wietrzynski, Yamauchi, Burt, Liu, Zhang, Martinez-Sanchez, Ziegler, Isensee, Schnabel, Engel and Peng2024). These approaches have been shown to outperform template matching for localizing macromolecules (de Teresa-Trueba et al., Reference de Teresa-Trueba, Goetz, Mattausch, Stojanovska, Zimmerli, Toro-Nahuelpan, Cheng, Tollervey, Pape, Beck, Diz-Muñoz, Kreshuk, Mahamid and Zaugg2023; Gubins et al., Reference Gubins, Chaillet, van der Schot, Veltkamp, Förster, Hao, Wan, Cui, Zhang, Moebel, Wang, Kihara, Zeng, Xu, Nguyen, White and Bunyak2020; Lamm et al., Reference Lamm, Righetto, Wietrzynski, Pöge, Martinez-Sanchez, Peng and Engel2022; Moebel et al., Reference Moebel, Martinez-Sanchez, Lamm, Righetto, Wietrzynski, Albert, Larivière, Fourmentin, Pfeffer, Ortiz, Baumeister, Peng, Engel and Kervrann2021). However, similar to manual annotation and template matching, these supervised learning approaches are limited to macromolecules with known structures. They are not suitable for high-throughput workflows and de novo structural characterization of macromolecular species (de Teresa-Trueba et al., Reference de Teresa-Trueba, Goetz, Mattausch, Stojanovska, Zimmerli, Toro-Nahuelpan, Cheng, Tollervey, Pape, Beck, Diz-Muñoz, Kreshuk, Mahamid and Zaugg2023; Gubins et al., Reference Gubins, Chaillet, van der Schot, Veltkamp, Förster, Hao, Wan, Cui, Zhang, Moebel, Wang, Kihara, Zeng, Xu, Nguyen, White and Bunyak2020; Lamm et al., Reference Lamm, Righetto, Wietrzynski, Pöge, Martinez-Sanchez, Peng and Engel2022; Moebel et al., Reference Moebel, Martinez-Sanchez, Lamm, Righetto, Wietrzynski, Albert, Larivière, Fourmentin, Pfeffer, Ortiz, Baumeister, Peng, Engel and Kervrann2021).

de novo localization and identification of species

For de novo structural characterization of macromolecular species with unknown structures, deep metric learning-based approaches, such as TomoTwin, and unsupervised learning approaches, such as Multi-Pattern Pursuit (MPP) and Deep Iterative Subtomogram Clustering Approach (DISCA) were recently developed (Rice et al., Reference Rice, Wagner, Stabrin, Sitsel, Prumbaum and Raunser2023; Xu et al., Reference Xu, Singla, Tocheva, Chang, Stevens, Jensen and Alber2019; Zeng et al., Reference Zeng, Kahng, Xue, Mahamid, Chang and Xu2023). These approaches aim to cluster subtomograms based on their structural similarity. Subtomogram averaging on the clustered subtomograms can aid in the structural characterization of macromolecular species at 10–20 Å resolutions (Rice et al., Reference Rice, Wagner, Stabrin, Sitsel, Prumbaum and Raunser2023; Zeng et al., Reference Zeng, Kahng, Xue, Mahamid, Chang and Xu2023). These approaches are currently sensitive to noise in the tomograms and the size and abundance of the macromolecular species. However, they hold great promise for de novo high-throughput structural characterization of macromolecular species using tomographic data.

Visual proteomics

Visual proteomics is an approach that aims to build molecular atlases that encapsulate structural descriptions of macromolecules within the cell using methods such as cryo-ET (Beck et al., Reference Beck, Covino, Hänelt and Müller-McNicoll2024; Förster et al., Reference Förster, Han, Beck and Jensen2010; McCafferty et al., Reference McCafferty, Klumpe, Amaro, Kukulski, Collinson and Engel2024). This approach is inherently integrative. Given a tomogram, large macromolecular species with known atomic structures can be localized and identified within it using methods like template matching. Densities with unknown macromolecular identities can be obtained using the de novo approaches described above. The in situ structures of these uncharacterized macromolecular species can then be determined using an integrative approach by rigid fitting of structures obtained using cryo-EM SPA, X-ray crystallography, and AI-based structure predictions along with data from orthogonal experiments such as fluorescence microscopy and XLMS (Beck et al., Reference Beck, Covino, Hänelt and Müller-McNicoll2024; Förster et al., Reference Förster, Han, Beck and Jensen2010; McCafferty et al., Reference McCafferty, Klumpe, Amaro, Kukulski, Collinson and Engel2024). For example, recent studies used integrative approaches to combine data from cryo-ET, SPA with cryo-EM, mass spectrometry, and predictions from AlphaFold to understand the molecular architecture of the human IFT-A and IFT-B complexes (Hesketh et al., Reference Hesketh, Mukhopadhyay, Nakamura, Toropova and Roberts2022) and microtubule doublets in mouse sperm cells (Chen et al., Reference Chen, Shiozaki, Haas, Skinner, Zhao, Guo, Polacco, Yu, Krogan, Lishko, Kaake, Vale and Agard2023). In summary, utilizing cryo-ET data in an integrative approach can provide insights into interactors of a macromolecular species, associated protein communities, and larger cellular neighborhoods (Beck et al., Reference Beck, Covino, Hänelt and Müller-McNicoll2024; Förster et al., Reference Förster, Han, Beck and Jensen2010; McCafferty et al., Reference McCafferty, Klumpe, Amaro, Kukulski, Collinson and Engel2024).

Outlook

Integrative modeling has progressed significantly in the past decade, as evidenced by the increasing number, size, and precision of structures deposited to the PDB-Dev and integrated into the PDB (https://pdb-dev.wwpdb.org) (Saltzberg et al., Reference Saltzberg, Viswanath, Echeverria, Chemmama, Webb and Sali2021; Vallat et al., Reference Vallat, Webb, Fayazi, Voinea, Tangmunarunkit, Ganesan, Lawson, Westbrook, Kesselman, Sali and Berman2021). Integrative structural biology plays a crucial role in the era of AI-based structure predictions. Experimental data from rapidly advancing techniques such as cryo-electron tomography, and AI-based predictions can complement each other within an integrative framework (Arvindekar, Majila, & Viswanath, Reference Arvindekar, Majila and Viswanath2024; Beck et al., Reference Beck, Covino, Hänelt and Müller-McNicoll2024; McCafferty et al., Reference McCafferty, Klumpe, Amaro, Kukulski, Collinson and Engel2024; Shor & Schneidman-Duhovny, Reference Shor and Schneidman-Duhovny2024b). This approach has proved powerful for several systems such as ciliary complexes and nuclear pore complexes (Chen et al., Reference Chen, Shiozaki, Haas, Skinner, Zhao, Guo, Polacco, Yu, Krogan, Lishko, Kaake, Vale and Agard2023; Fontana et al., Reference Fontana, Dong, Pi, Tong, Hecksel, Wang, Fu, Bustamante and Wu2022; Hesketh et al., Reference Hesketh, Mukhopadhyay, Nakamura, Toropova and Roberts2022; McCafferty et al., Reference McCafferty, Klumpe, Amaro, Kukulski, Collinson and Engel2024; Mosalaganti et al., Reference Mosalaganti, Obarska-Kosinska, Siggel, Taniguchi, Turoňová, Zimmerli, Buczak, Schmidt, Margiotta, Mackmull, Hagen, Hummer, Kosinski and Beck2022; Zhu et al., Reference Zhu, Huang, Zeng, Zhan, Liang, Xu, Zhao, Wang, Wang, Zhou, Tao, Liu, Lei, Yan and Shi2022). Alphafold and similar AI-based prediction methods can increasingly solve structures for larger and more complex systems (Abramson et al., Reference Abramson, Adler, Dunger, Evans, Green, Pritzel, Ronneberger, Willmore, Ballard, Bambrick, Bodenstein, Evans, Hung, O’Neill, Reiman, Tunyasuvunakool, Wu, Žemgulytė, Arvaniti and Jumper2024). However, their applicability to solving entire structures of large assemblies remains an open question as they are limited by the GPU memory as well as the availability of training data. For example, membrane proteins and IDPs are under-represented in the training data (Carugo & Djinović-Carugo, Reference Carugo and Djinović-Carugo2023; Dobson et al., Reference Dobson, Szekeres, Gerdán, Langó, Zeke and Tusnády2023). The low-pLDDT regions in Alphafold structures often coincide with IDRs, suggesting that Alphafold may be used to predict these regions (Wilson, Choy, & Karttunen, Reference Wilson, Choy and Karttunen2022). In contrast, in cases where Alphafold predicts structures of IDPs with high confidence, these regions typically represent the folded conformations of the IDPs, indicating a disorder-to-order transition in the presence of a partner (Alderson, Pritišanac, Kolarić, Moses, & Forman-Kay, Reference Alderson, Pritišanac, Kolarić, Moses and Forman-Kay2023; Wilson et al., Reference Wilson, Choy and Karttunen2022). Nonetheless, the static structures from Alphafold are not an accurate representation of the dynamic behavior of IDPs, characterized by an ensemble of conformations (Ruff & Pappu, Reference Ruff and Pappu2021).

In this Perspective, we highlighted two emerging frontiers for method development in integrative modeling: modeling disordered regions and modeling with data from cryo-electron tomography. Here, we briefly point to other open areas in integrative modeling that are the subject of current studies and/or may benefit from timely method development. First, a lack of knowledge about the system stoichiometry is one of the challenges for starting integrative modeling. Methods to estimate the stoichiometry based on the confidence of AI-based predictions are only beginning to be developed and are not yet generalizable (Chim & Elofsson, Reference Chim and Elofsson2024; Shor & Schneidman-Duhovny, Reference Shor and Schneidman-Duhovny2024b, Reference Shor and Schneidman-Duhovny2024a). Second, methods for incorporating in vivo data in modeling are required. Recently, in vivo genetic interaction measurements were encoded as Bayesian distance restraints for integrative modeling of assemblies (Braberg et al., Reference Braberg, Echeverria, Bohn, Cimermancic, Shiver, Alexander, Xu, Shales, Dronamraju, Jiang, Dwivedi, Bogdanoff, Chaung, Hüttenhain, Wang, Mavor, Pellarin, Schneidman, Bader and Krogan2020). Similarly, methods for integrating other in vivo data such as data from super-resolution microscopy may also be developed to model larger cellular neighborhoods. Third, on the model representation front, it would be beneficial to determine system representation using objective measures instead of fixing them ad hoc (Arvindekar, Pathak, et al., Reference Arvindekar, Pathak, Majila and Viswanath2024; Viswanath & Sali, Reference Viswanath and Sali2019). Current methods for optimizing representations are limited to assessing a small number of candidate representations (Arvindekar, Pathak, et al., Reference Arvindekar, Pathak, Majila and Viswanath2024; Viswanath & Sali, Reference Viswanath and Sali2019). Methods that enable sampling and assessing a large number of representations, for example by dynamically varying the model representations during sampling, would benefit integrative modeling (Viswanath & Sali, Reference Viswanath and Sali2019). Fourth, methods for integrative modeling of dynamic systems with multiple discrete states and/or a continuum of states are also continually advancing (Habeck, Reference Habeck2023; Hoff, Thomasen, Lindorff-Larsen, & Bonomi, Reference Hoff, Thomasen, Lindorff-Larsen and Bonomi2024; Hoff, Zinke, Izadi-Pruneyre, & Bonomi, Reference Hoff, Zinke, Izadi-Pruneyre and Bonomi2024; Lincoff et al., Reference Lincoff, Haghighatlari, Krzeminski, Teixeira, Gomes, Gradinaru, Forman-Kay and Head-Gordon2020; Potrzebowski, Trewhella, & Andre, Reference Potrzebowski, Trewhella and Andre2018). Fifth, sampling procedures in integrative modeling may be improved by leveraging the recent advances in deep learning, particularly in generative modeling. Specifically, recent generative modeling methods for protein structure prediction may be extended to incorporate experimental data, potentially leading to more efficient sampling procedures than the current stochastic sampling methods (Jing, Berger, & Jaakkola, Reference Jing, Berger and Jaakkola2024; Watson et al., Reference Watson, Juergens, Bennett, Trippe, Yim, Eisenach, Ahern, Borst, Ragotte, Milles, Wicky, Hanikel, Pellock, Courbet, Sheffler, Wang, Venkatesh, Sappington, Torres and Baker2023; Wu et al., Reference Wu, Yang, van den Berg, Alamdari, Zou, Lu and Amini2024; Zheng et al., Reference Zheng, He, Liu, Shi, Lu, Feng, Ju, Wang, Zhu, Min, Zhang, Tang, Hao, Jin, Chen, Noé, Liu and Liu2024). Finally, methods for comprehensive validation of integrative models, including assessment of model uncertainty and Bayesian assessment of fit to different kinds of input data are also necessary and are under development (Sali et al., Reference Sali, Berman, Schwede, Trewhella, Kleywegt, Burley, Markley, Nakamura, Adams, Bonvin, Chiu, Peraro, Di Maio, Ferrin, Grünewald, Gutmanas, Henderson, Hummer, Iwasaki and Westbrook2015; Vallat et al., Reference Vallat, Webb, Fayazi, Voinea, Tangmunarunkit, Ganesan, Lawson, Westbrook, Kesselman, Sali and Berman2021). In all, these efforts will facilitate faster, more accurate, and more precise characterization of larger assemblies (Sali, Reference Sali2021). The grand challenge in the field is to construct spatiotemporal models of entire cells. Integrative models of assemblies can contribute directly to this effort via metamodeling efforts that involve the integration of models at different scales to address the grand challenge (Raveh et al., Reference Raveh, Sun, White, Sanyal, Tempkin, Zheng, Bharath, Singla, Wang, Zhao, Li, Graham, Kesselman, Stevens and Sali2021).

Open peer review

To view the open peer review materials for this article, please visit http://doi.org/10.1017/qrd.2024.15.

Acknowledgments

Molecular graphics images were produced using the UCSF Chimera and UCSF ChimeraX packages from the Resource for Biocomputing, Visualization, and Informatics at the University of California, San Francisco (supported by NIH P41 RR001081, NIH R01-GM129325, and National Institute of Allergy and Infectious Diseases).

Author contribution

K.M., S.A., and M.J.: reading and synthesis. K.M., S.A., M.J., and S.V.: writing: original draft, writing: revision. K.M.: visualization. S.V.: supervision, funding.

Funding

This work has been supported by the following grants: Department of Atomic Energy (DAE) TIFR grant RTI 4006, Department of Science and Technology (DST) SERB grant SPG/2020/000475, and Department of Biotechnology (DBT) BT/PR40323/BTIS/137/78/2023 from the Government of India to S.V.

Competing interest

None declared.

Footnotes

K.M. and S.A. authors have contributed equally.

References

Abramson, J., Adler, J., Dunger, J., Evans, R., Green, T., Pritzel, A., Ronneberger, O., Willmore, L., Ballard, A. J., Bambrick, J., Bodenstein, S. W., Evans, D. A., Hung, C.-C., O’Neill, M., Reiman, D., Tunyasuvunakool, K., Wu, Z., Žemgulytė, A., Arvaniti, E., & Jumper, J. M. (2024). Accurate structure prediction of biomolecular interactions with AlphaFold 3. Nature, 630(8016), 493500. https://doi.org/10.1038/s41586-024-07487-wCrossRefGoogle ScholarPubMed
Akdel, M., Pires, D. E. V., Pardo, E. P., Jänes, J., Zalevsky, A. O., Mészáros, B., Bryant, P., Good, L. L., Laskowski, R. A., Pozzati, G., Shenoy, A., Zhu, W., Kundrotas, P., Serra, V. R., Rodrigues, C. H. M., Dunham, A. S., Burke, D., Borkakoti, N., Velankar, S., & Beltrao, P. (2022). A structural biology community assessment of AlphaFold2 applications. Nature Structural & Molecular Biology, 29(11), 10561067. https://doi.org/10.1038/s41594-022-00849-wCrossRefGoogle ScholarPubMed
Akey, C. W., Echeverria, I., Ouch, C., Nudelman, I., Shi, Y., Wang, J., Chait, B. T., Sali, A., Fernandez-Martinez, J., & Rout, M. P. (2023). Implications of a multiscale structure of the yeast nuclear pore complex. Molecular Cell, 83(18), 32833302.e5. https://doi.org/10.1016/j.molcel.2023.08.025CrossRefGoogle ScholarPubMed
Akey, C. W., Singh, D., Ouch, C., Echeverria, I., Nudelman, I., Varberg, J. M., Yu, Z., Fang, F., Shi, Y., Wang, J., Salzberg, D., Song, K., Xu, C., Gumbart, J. C., Suslov, S., Unruh, J., Jaspersen, S. L., Chait, B. T., Sali, A., & Rout, M. P. (2022). Comprehensive structure and functional adaptations of the yeast nuclear pore complex. Cell, 185(2), 361378.e25. https://doi.org/10.1016/j.cell.2021.12.015CrossRefGoogle ScholarPubMed
Alber, F., Dokudovskaya, S., Veenhoff, L. M., Zhang, W., Kipper, J., Devos, D., Suprapto, A., Karni-Schmidt, O., Williams, R., Chait, B. T., Rout, M. P., & Sali, A. (2007). Determining the architectures of macromolecular assemblies. Nature, 450(7170), 683694. https://doi.org/10.1038/nature06404CrossRefGoogle ScholarPubMed
Alderson, T. R., Pritišanac, I., Kolarić, Đ., Moses, A. M., & Forman-Kay, J. D. (2023). Systematic identification of conditionally folded intrinsically disordered regions by AlphaFold2. Proceedings of the National Academy of Sciences, 120(44), e2304302120. https://doi.org/10.1073/pnas.2304302120CrossRefGoogle ScholarPubMed
Arvindekar, S., Jackman, M. J., Low, J. K. K., Landsberg, M. J., Mackay, J. P., & Viswanath, S. (2022). Molecular architecture of nucleosome remodeling and deacetylase sub-complexes by integrative structure determination. Protein Science, 31(9), e4387. https://doi.org/10.1002/pro.4387CrossRefGoogle ScholarPubMed
Arvindekar, S., Majila, K., & Viswanath, S. (2024). Recent methods from statistical inference and machine learning to improve integrative modeling of macromolecular assemblies (Version 4). arXiv. https://doi.org/10.48550/ARXIV.2401.17894CrossRefGoogle Scholar
Arvindekar, S., Pathak, A. S., Majila, K., & Viswanath, S. (2024). Optimizing representations for integrative structural modeling using Bayesian model selection. Bioinformatics, 40(3), btae106. https://doi.org/10.1093/bioinformatics/btae106CrossRefGoogle ScholarPubMed
Baldwin, E. T., Van Eeuwen, T., Hoyos, D., Zalevsky, A., Tchesnokov, E. P., Sánchez, R., Miller, B. D., Di Stefano, L. H., Ruiz, F. X., Hancock, M., Işik, E., Mendez-Dorantes, C., Walpole, T., Nichols, C., Wan, P., Riento, K., Halls-Kass, R., Augustin, M., Lammens, A., & Taylor, M. S. (2024). Structures, functions and adaptations of the human LINE-1 ORF2 protein. Nature, 626(7997), 194206. https://doi.org/10.1038/s41586-023-06947-zCrossRefGoogle ScholarPubMed
Baratam, K., & Srivastava, A. (2024). SOP-MULTI: A self-organized polymer based coarse-grained model for multi-domain and intrinsically disordered proteins with conformation ensemble consistent with experimental scattering data. Journal of Chemical Theory and Computation, 20(22), 1017910198. https://doi.org/10.1101/2024.04.29.591764CrossRefGoogle Scholar
Baul, U., Chakraborty, D., Mugnai, M. L., Straub, J. E., & Thirumalai, D. (2019). Sequence effects on size, shape, and structural heterogeneity in intrinsically disordered proteins. The Journal of Physical Chemistry. B, 123(16), 34623474. https://doi.org/10.1021/acs.jpcb.9b02575CrossRefGoogle ScholarPubMed
Beck, M., Covino, R., Hänelt, I., & Müller-McNicoll, M. (2024). Understanding the cell: future views of structural biology. Cell, 187(3), 545562. https://doi.org/10.1016/j.cell.2023.12.017CrossRefGoogle ScholarPubMed
Beckham, K. S. H., Ritter, C., Chojnowski, G., Ziemianowicz, D. S., Mullapudi, E., Rettel, M., Savitski, M. M., Mortensen, S. A., Kosinski, J., & Wilmanns, M. (2021). Structure of the mycobacterial ESX-5 type VII secretion system pore complex. Science Advances, 7(26), eabg9923. https://doi.org/10.1126/sciadv.abg9923CrossRefGoogle ScholarPubMed
Bepler, T., & Berger, B. (2021). Learning the protein language: evolution, structure, and function. Cell Systems, 12(6), 654669.e3. https://doi.org/10.1016/j.cels.2021.05.017CrossRefGoogle ScholarPubMed
Berlin, K., Castañeda, C. A., Schneidman-Duhovny, D., Sali, A., Nava-Tudela, A., & Fushman, D. (2013). Recovering a representative conformational ensemble from underdetermined macromolecular structural data. Journal of the American Chemical Society, 135(44), 1659516609. https://doi.org/10.1021/ja4083717CrossRefGoogle ScholarPubMed
Bernetti, M., & Bussi, G. (2023). Integrating experimental data with molecular simulations to investigate RNA structural dynamics. Current Opinion in Structural Biology, 78, 102503. https://doi.org/10.1016/j.sbi.2022.102503CrossRefGoogle ScholarPubMed
Best, R. B., Zheng, W., & Mittal, J. (2014). Balanced protein-water interactions improve properties of disordered proteins and non-specific protein association. Journal of Chemical Theory and Computation, 10(11), 51135124. https://doi.org/10.1021/ct500569bCrossRefGoogle ScholarPubMed
Beton, J. G., Mulvaney, T., Cragnolini, T., & Topf, M. (2024). Cryo-EM structure and B-factor refinement with ensemble representation. Nature Communications, 15(1), Article 1. https://doi.org/10.1038/s41467-023-44593-1CrossRefGoogle ScholarPubMed
Bley, C. J., Nie, S., Mobbs, G. W., Petrovic, S., Gres, A. T., Liu, X., Mukherjee, S., Harvey, S., Huber, F. M., Lin, D. H., Brown, B., Tang, A. W., Rundlet, E. J., Correia, A. R., Chen, S., Regmi, S. G., Stevens, T. A., Jette, C. A., Dasso, M., & Hoelz, A. (2022). Architecture of the cytoplasmic face of the nuclear pore. Science, 376(6598), eabm9129. https://doi.org/10.1126/science.abm9129CrossRefGoogle ScholarPubMed
Bonomi, M., & Camilloni, C. (2017). Integrative structural and dynamical biology with PLUMED-ISDB. Bioinformatics, 33(24), 39994000. https://doi.org/10.1093/bioinformatics/btx529CrossRefGoogle ScholarPubMed
Bonomi, M., Camilloni, C., Cavalli, A., & Vendruscolo, M. (2016). Metainference: a Bayesian inference method for heterogeneous systems. Science Advances, 2(1), e1501177. https://doi.org/10.1126/sciadv.1501177CrossRefGoogle ScholarPubMed
Bonomi, M., Camilloni, C., & Vendruscolo, M. (2016). Metadynamic metainference: enhanced sampling of the metainference ensemble using metadynamics. Scientific Reports, 6(1), 31232. https://doi.org/10.1038/srep31232CrossRefGoogle ScholarPubMed
Bonomi, M., Heller, G. T., Camilloni, C., & Vendruscolo, M. (2017). Principles of protein structural ensemble determination. Current Opinion in Structural Biology, 42, 106116. https://doi.org/10.1016/j.sbi.2016.12.004CrossRefGoogle ScholarPubMed
Braberg, H., Echeverria, I., Bohn, S., Cimermancic, P., Shiver, A., Alexander, R., Xu, J., Shales, M., Dronamraju, R., Jiang, S., Dwivedi, G., Bogdanoff, D., Chaung, K. K., Hüttenhain, R., Wang, S., Mavor, D., Pellarin, R., Schneidman, D., Bader, J. S., & Krogan, N. J. (2020). Genetic interaction mapping informs integrative structure determination of protein complexes. Science, 370(6522), eaaz4910. https://doi.org/10.1126/science.aaz4910CrossRefGoogle ScholarPubMed
Brilot, A. F., Lyon, A. S., Zelter, A., Viswanath, S., Maxwell, A., MacCoss, M. J., Muller, E. G., Sali, A., Davis, T. N., & Agard, D. A. (2021). CM1-driven assembly and activation of yeast γ-tubulin small complex underlies microtubule nucleation. eLife, 10, e65168. https://doi.org/10.7554/eLife.65168CrossRefGoogle ScholarPubMed
Carugo, O., & Djinović-Carugo, K. (2023). Structural biology: a golden era. PLOS Biology, 21(6), e3002187. https://doi.org/10.1371/journal.pbio.3002187CrossRefGoogle ScholarPubMed
Cavalli, A., Camilloni, C., & Vendruscolo, M. (2013). Molecular dynamics simulations with replica-averaged structural restraints generate structural ensembles according to the maximum entropy principle. The Journal of Chemical Physics, 138(9), 094112. https://doi.org/10.1063/1.4793625CrossRefGoogle Scholar
Cesari, A., Gil-Ley, A., & Bussi, G. (2016). Combining simulations and solution experiments as a paradigm for RNA force field refinement. Journal of Chemical Theory and Computation, 12(12), 61926200. https://doi.org/10.1021/acs.jctc.6b00944CrossRefGoogle ScholarPubMed
Chang, L., Wang, F., Connolly, K., Meng, H., Su, Z., Cvirkaite-Krupovic, V., Krupovic, M., Egelman, E. H., & Si, D. (2022). DeepTracer-ID: De novo protein identification from cryo-EM maps. Biophysical Journal, 121(15), 28402848. https://doi.org/10.1016/j.bpj.2022.06.025CrossRefGoogle ScholarPubMed
Chan-Yao-Chong, M., Durand, D., & Ha-Duong, T. (2019). Molecular dynamics simulations combined with nuclear magnetic resonance and/or small-angle x-ray scattering data for characterizing intrinsically disordered protein conformational ensembles. Journal of Chemical Information and Modeling, 59(5), 17431758. https://doi.org/10.1021/acs.jcim.8b00928CrossRefGoogle ScholarPubMed
Chen, Z., Shiozaki, M., Haas, K. M., Skinner, W. M., Zhao, S., Guo, C., Polacco, B. J., Yu, Z., Krogan, N. J., Lishko, P. V., Kaake, R. M., Vale, R. D., & Agard, D. A. (2023). De novo protein identification in mammalian sperm using in situ cryoelectron tomography and AlphaFold2 docking. Cell, 186(23), 50415053.e19. https://doi.org/10.1016/j.cell.2023.09.017CrossRefGoogle ScholarPubMed
Chim, H. Y., & Elofsson, A. (2024). MoLPC2: improved prediction of large protein complex structures and stoichiometry using Monte Carlo Tree Search and AlphaFold2. Bioinformatics, 40(6), btae329. https://doi.org/10.1093/bioinformatics/btae329CrossRefGoogle ScholarPubMed
Crehuet, R., Buigues, P. J., Salvatella, X., & Lindorff-Larsen, K. (2019). Bayesian-maximum-entropy reweighting of IDP ensembles based on NMR chemical shifts. Entropy, 21(9), 898. https://doi.org/10.3390/e21090898CrossRefGoogle Scholar
Cruz-León, S., Majtner, T., Hoffmann, P. C., Kreysing, J. P., Kehl, S., Tuijtel, M. W., Schaefer, S. L., Geißler, K., Beck, M., Turoňová, B., & Hummer, G. (2024). High-confidence 3D template matching for cryo-electron tomography. Nature Communications, 15(1), 3992. https://doi.org/10.1038/s41467-024-47839-8CrossRefGoogle ScholarPubMed
de Teresa-Trueba, I., Goetz, S. K., Mattausch, A., Stojanovska, F., Zimmerli, C. E., Toro-Nahuelpan, M., Cheng, D. W. C., Tollervey, F., Pape, C., Beck, M., Diz-Muñoz, A., Kreshuk, A., Mahamid, J., & Zaugg, J. B. (2023). Convolutional networks for supervised mining of molecular patterns within cellular context. Nature Methods, 20(2), 2. https://doi.org/10.1038/s41592-022-01746-2CrossRefGoogle ScholarPubMed
Dobson, L., Szekeres, L. I., Gerdán, C., Langó, T., Zeke, A., & Tusnády, G. E. (2023). TmAlphaFold database: membrane localization and evaluation of AlphaFold2 predicted alpha-helical transmembrane protein structures. Nucleic Acids Research, 51(D1), D517D522. https://doi.org/10.1093/nar/gkac928CrossRefGoogle ScholarPubMed
Dominguez, C., Boelens, R., & Bonvin, A. M. J. J. (2003). HADDOCK: a protein-protein docking approach based on biochemical or biophysical information. Journal of the American Chemical Society, 125(7), 17311737. https://doi.org/10.1021/ja026939xCrossRefGoogle ScholarPubMed
Fisher, C. K., & Stultz, C. M. (2011). Constructing ensembles for intrinsically disordered proteins. Current Opinion in Structural Biology, 21(3), 426431. https://doi.org/10.1016/j.sbi.2011.04.001CrossRefGoogle ScholarPubMed
Fisher, C. K., Ullman, O., & Stultz, C. M. (2013). Comparative studies of disordered proteins with similar sequences: application to Aβ40 and Aβ42. Biophysical Journal, 104(7), 15461555. https://doi.org/10.1016/j.bpj.2013.02.023CrossRefGoogle ScholarPubMed
Flacht, L., Lunelli, M., Kaszuba, K., Chen, Z. A., Reilly, F. J. O., Rappsilber, J., Kosinski, J., & Kolbe, M. (2023). Integrative structural analysis of the type III secretion system needle complex from Shigella flexneri. Protein Science, 32(4), e4595. https://doi.org/10.1002/pro.4595CrossRefGoogle ScholarPubMed
Fontana, P., Dong, Y., Pi, X., Tong, A. B., Hecksel, C. W., Wang, L., Fu, T.-M., Bustamante, C., & Wu, H. (2022). Structure of cytoplasmic ring of nuclear pore complex by integrative cryo-EM and AlphaFold. Science, 376(6598), eabm9326. https://doi.org/10.1126/science.abm9326CrossRefGoogle ScholarPubMed
Förster, F., Han, B.-G., & Beck, M. (2010). Chapter Eleven—Visual Proteomics. In Jensen, G. J., Methods in Enzymology. 483, pp. 215243. Academic Press. https://doi.org/10.1016/S0076-6879(10)83011-3Google Scholar
Frangakis, A. S., Böhm, J., Förster, F., Nickell, S., Nicastro, D., Typke, D., Hegerl, R., & Baumeister, W. (2002). Identification of macromolecular complexes in cryoelectron tomograms of phantom cells. Proceedings of the National Academy of Sciences, 99(22), 1415314158. https://doi.org/10.1073/pnas.172520299CrossRefGoogle ScholarPubMed
Fröhlking, T., Bernetti, M., & Bussi, G. (2023). Simultaneous refinement of molecular dynamics ensembles and forward models using experimental data. The Journal of Chemical Physics, 158(21), 214120. https://doi.org/10.1063/5.0151163CrossRefGoogle ScholarPubMed
Ghanaeian, A., Majhi, S., McCafferty, C. L., Nami, B., Black, C. S., Yang, S. K., Legal, T., Papoulas, O., Janowska, M., Valente-Paterno, M., Marcotte, E. M., Wloga, D., & Bui, K. H. (2023). Integrated modeling of the Nexin-dynein regulatory complex reveals its regulatory mechanism. Nature Communications, 14(1), 5741. https://doi.org/10.1038/s41467-023-41480-7CrossRefGoogle ScholarPubMed
Gubins, I., Chaillet, M. L., van der Schot, G., Veltkamp, R. C., Förster, F., Hao, Y., Wan, X., Cui, X., Zhang, F., Moebel, E., Wang, X., Kihara, D., Zeng, X., Xu, M., Nguyen, N. P., White, T., & Bunyak, F. (2020). SHREC 2020: classification in cryo-electron tomograms. Computers & Graphics, 91, 279289. https://doi.org/10.1016/j.cag.2020.07.010CrossRefGoogle Scholar
Gupta, R., Liu, Y., Wang, H., Nordyke, C. T., Puterbaugh, R. Z., Cui, W., Varga, K., Chu, F., Ke, H., Vashisth, H., & Cote, R. H. (2020). Structural analysis of the regulatory GAF domains of cGMP phosphodiesterase elucidates the allosteric communication pathway. Journal of Molecular Biology, 432(21), 57655783. https://doi.org/10.1016/j.jmb.2020.08.026CrossRefGoogle ScholarPubMed
Habeck, M. (2023). Bayesian methods in integrative structure modeling. Biological Chemistry, 404(8–9), 741754. https://doi.org/10.1515/hsz-2023-0145CrossRefGoogle ScholarPubMed
Hermann, M. R., & Hub, J. S. (2019). SAXS-restrained ensemble simulations of intrinsically disordered proteins with commitment to the principle of maximum entropy. Journal of Chemical Theory and Computation, 15(9), 51035115. https://doi.org/10.1021/acs.jctc.9b00338CrossRefGoogle ScholarPubMed
Hesketh, S. J., Mukhopadhyay, A. G., Nakamura, D., Toropova, K., & Roberts, A. J. (2022). IFT-A structure reveals carriages for membrane protein transport into cilia. Cell, 185(26), 49714985.e16. https://doi.org/10.1016/j.cell.2022.11.010CrossRefGoogle ScholarPubMed
Hoff, S. E., Thomasen, F. E., Lindorff-Larsen, K., & Bonomi, M. (2024). Accurate model and ensemble refinement using cryo-electron microscopy maps and Bayesian inference. PLOS Computational Biology, 20(7), e1012180. https://doi.org/10.1371/journal.pcbi.1012180CrossRefGoogle ScholarPubMed
Hoff, S. E., Zinke, M., Izadi-Pruneyre, N., & Bonomi, M. (2024). Bonds and bytes: the odyssey of structural biology. Current Opinion in Structural Biology, 84, 102746. https://doi.org/10.1016/j.sbi.2023.102746CrossRefGoogle ScholarPubMed
Honorato, R. V., Trellet, M. E., Jiménez-García, B., Schaarschmidt, J. J., Giulini, M., Reys, V., Koukos, P. I., Rodrigues, J. P. G. L. M., Karaca, E., Van Zundert, G. C. P., Roel-Touris, J., Van Noort, C. W., Jandová, Z., Melquiond, A. S. J., & Bonvin, A. M. J. J. (2024). The HADDOCK2.4 web server for integrative modeling of biomolecular complexes. Nature Protocols. https://doi.org/10.1038/s41596-024-01011-0CrossRefGoogle ScholarPubMed
Huang, J., Rauscher, S., Nawrocki, G., Ran, T., Feig, M., de Groot, B. L., Grubmüller, H., & MacKerell, A. D. (2017). CHARMM36m: an improved force field for folded and intrinsically disordered proteins. Nature Methods, 14(1), 7173. https://doi.org/10.1038/nmeth.4067CrossRefGoogle ScholarPubMed
Hummer, G., & Köfinger, J. (2015). Bayesian ensemble refinement by replica simulations and reweighting. The Journal of Chemical Physics, 143(24), 243150. https://doi.org/10.1063/1.4937786CrossRefGoogle ScholarPubMed
Inbar, Y., Benyamini, H., Nussinov, R., & Wolfson, H. J. (2005). Combinatorial docking approach for structure prediction of large proteins and multi-molecular assemblies. Physical Biology, 2(4), S156S165. https://doi.org/10.1088/1478-3975/2/4/S10CrossRefGoogle ScholarPubMed
Jahn, L. R., Marquet, C., Heinzinger, M., & Rost, B. (2024). Protein embeddings predict binding residues in disordered regions. Scientific Reports, 14(1), 13566. https://doi.org/10.1038/s41598-024-64211-4CrossRefGoogle ScholarPubMed
Janson, G., & Feig, M. (2024). Transferable deep generative modeling of intrinsically disordered protein conformations. PLoS Computational Biology, 20(5), e1012144. https://doi.org/10.1371/journal.pcbi.1012144CrossRefGoogle ScholarPubMed
Janson, G., Valdes-Garcia, G., Heo, L., & Feig, M. (2023). Direct generation of protein conformational ensembles via machine learning. Nature Communications, 14(1), 774. https://doi.org/10.1038/s41467-023-36443-xCrossRefGoogle ScholarPubMed
Jing, B., Berger, B., & Jaakkola, T. (2024). AlphaFold meets flow matching for generating protein ensembles. Proceedings of the 41st International Conference on Machine Learning, 22277–22303. https://proceedings.mlr.press/v235/jing24a.htmlGoogle Scholar
Joseph, J. A., Reinhardt, A., Aguirre, A., Chew, P. Y., Russell, K. O., Espinosa, J. R., Garaizar, A., & Collepardo-Guevara, R. (2021). Physics-driven coarse-grained model for biomolecular phase separation with near-quantitative accuracy. Nature Computational Science, 1(11), Article 11. https://doi.org/10.1038/s43588-021-00155-3CrossRefGoogle ScholarPubMed
Jumper, J., Evans, R., Pritzel, A., Green, T., Figurnov, M., Ronneberger, O., Tunyasuvunakool, K., Bates, R., Žídek, A., Potapenko, A., Bridgland, A., Meyer, C., Kohl, S. A. A., Ballard, A. J., Cowie, A., Romera-Paredes, B., Nikolov, S., Jain, R., Adler, J., & Hassabis, D. (2021). Highly accurate protein structure prediction with AlphaFold. Nature, 596(7873), 583589. https://doi.org/10.1038/s41586-021-03819-2CrossRefGoogle ScholarPubMed
Kaake, R. M., Echeverria, I., Kim, S. J., Von Dollen, J., Chesarino, N. M., Feng, Y., Yu, C., Ta, H., Chelico, L., Huang, L., Gross, J., Sali, A., & Krogan, N. J. (2021). Characterization of an A3G-VifHIV-1-CRL5-CBFβ structure using a cross-linking mass spectrometry pipeline for integrative modeling of host–pathogen complexes. Molecular & Cellular Proteomics, 20, 100132. https://doi.org/10.1016/j.mcpro.2021.100132CrossRefGoogle ScholarPubMed
Khanppnavar, B., Schuster, D., Lavriha, P., Uliana, F., Özel, M., Mehta, V., Leitner, A., Picotti, P., & Korkhov, V. M. (2024). Regulatory sites of CaM-sensitive adenylyl cyclase AC8 revealed by cryo-EM and structural proteomics. EMBO Reports, 25(3), 15131540. https://doi.org/10.1038/s44319-024-00076-yCrossRefGoogle ScholarPubMed
Köfinger, J., Stelzl, L. S., Reuter, K., Allande, C., Reichel, K., & Hummer, G. (2019). Efficient ensemble refinement by reweighting. Journal of Chemical Theory and Computation, 15(5), 33903401. https://doi.org/10.1021/acs.jctc.8b01231CrossRefGoogle ScholarPubMed
Lamm, L., Righetto, R. D., Wietrzynski, W., Pöge, M., Martinez-Sanchez, A., Peng, T., & Engel, B. D. (2022). MemBrain: A deep learning-aided pipeline for detection of membrane proteins in Cryo-electron tomograms. Computer Methods and Programs in Biomedicine, 224, 106990. https://doi.org/10.1016/j.cmpb.2022.106990CrossRefGoogle ScholarPubMed
Lamm, L., Zufferey, S., Righetto, R. D., Wietrzynski, W., Yamauchi, K. A., Burt, A., Liu, Y., Zhang, H., Martinez-Sanchez, A., Ziegler, S., Isensee, F., Schnabel, J. A., Engel, B. D., & Peng, T. (2024). MemBrain v2: An end-to-end tool for the analysis of membranes in cryo-electron tomography (p. 2024.01.05.574336). bioRxiv. https://doi.org/10.1101/2024.01.05.574336CrossRefGoogle Scholar
Leman, J. K., Weitzner, B. D., Lewis, S. M., Adolf-Bryfogle, J., Alam, N., Alford, R. F., Aprahamian, M., Baker, D., Barlow, K. A., Barth, P., Basanta, B., Bender, B. J., Blacklock, K., Bonet, J., Boyken, S. E., Bradley, P., Bystroff, C., Conway, P., Cooper, S., & Bonneau, R. (2020). Macromolecular modeling and design in Rosetta: Recent methods and frameworks. Nature Methods, 17(7), 665680. https://doi.org/10.1038/s41592-020-0848-2CrossRefGoogle ScholarPubMed
Lincoff, J., Haghighatlari, M., Krzeminski, M., Teixeira, J. M. C., Gomes, G.-N. W., Gradinaru, C. C., Forman-Kay, J. D., & Head-Gordon, T. (2020). Extended experimental inferential structure determination method in determining the structural ensembles of disordered protein states. Communications Chemistry, 3(1), Article 1. https://doi.org/10.1038/s42004-020-0323-0CrossRefGoogle ScholarPubMed
Lindorff-Larsen, K., & Kragelund, B. B. (2021). On the potential of machine learning to examine the relationship between sequence, structure, dynamics and function of intrinsically disordered proteins. Journal of Molecular Biology, 433(20), 167196. https://doi.org/10.1016/j.jmb.2021.167196CrossRefGoogle ScholarPubMed
Liu, X., Zhang, Y., Wen, Z., Hao, Y., Banks, C. A. S., Cesare, J., Bhattacharya, S., Arvindekar, S., Lange, J. J., Xie, Y., Garcia, B. A., Slaughter, B. D., Unruh, J. R., Viswanath, S., Florens, L., Workman, J. L., & Washburn, M. P. (2024). An integrated structural model of the DNA damage-responsive H3K4me3 binding WDR76:SPIN1 complex with the nucleosome. Proceedings of the National Academy of Sciences, 121(33), e2318601121. https://doi.org/10.1073/pnas.2318601121CrossRefGoogle Scholar
Lotthammer, J. M., Ginell, G. M., Griffith, D., Emenecker, R. J., & Holehouse, A. S. (2024). Direct prediction of intrinsically disordered protein conformational properties from sequence. Nature Methods, 21(3), 465476. https://doi.org/10.1038/s41592-023-02159-5CrossRefGoogle ScholarPubMed
Mansoor, S., Baek, M., Park, H., Lee, G. R., & Baker, D. (2024). Protein ensemble generation through variational autoencoder latent space sampling. Journal of Chemical Theory and Computation, 20(7), 26892695. https://doi.org/10.1021/acs.jctc.3c01057CrossRefGoogle ScholarPubMed
Marrink, S. J., Risselada, H. J., Yefimov, S., Tieleman, D. P., & de Vries, A. H. (2007). The MARTINI force field: Coarse grained model for biomolecular simulations. The Journal of Physical Chemistry B, 111(27), 78127824. https://doi.org/10.1021/jp071097fCrossRefGoogle ScholarPubMed
Maurer, V. J., Siggel, M., & Kosinski, J. (2024). PyTME (Python Template Matching Engine): A fast, flexible, and multi-purpose template matching library for cryogenic electron microscopy data. SoftwareX, 25, 101636. https://doi.org/10.1016/j.softx.2024.101636CrossRefGoogle Scholar
McCafferty, C. L., Klumpe, S., Amaro, R. E., Kukulski, W., Collinson, L., & Engel, B. D. (2024). Integrating cellular electron microscopy with multimodal data to explore biology across space and time. Cell, 187(3), 563584. https://doi.org/10.1016/j.cell.2024.01.005CrossRefGoogle ScholarPubMed
McCafferty, C. L., Papoulas, O., Jordan, M. A., Hoogerbrugge, G., Nichols, C., Pigino, G., Taylor, D. W., Wallingford, J. B., & Marcotte, E. M. (2022). Integrative modeling reveals the molecular architecture of the intraflagellar transport A (IFT-A) complex. eLife, 11, e81977. https://doi.org/10.7554/eLife.81977CrossRefGoogle ScholarPubMed
Michael, A. K., Stoos, L., Crosby, P., Eggers, N., Nie, X. Y., Makasheva, K., Minnich, M., Healy, K. L., Weiss, J., Kempf, G., Cavadini, S., Kater, L., Seebacher, J., Vecchia, L., Chakraborty, D., Isbel, L., Grand, R. S., Andersch, F., Fribourgh, J. L., & Thomä, N. H. (2023). Cooperation between bHLH transcription factors and histones for DNA access. Nature, 619(7969), 385393. https://doi.org/10.1038/s41586-023-06282-3CrossRefGoogle ScholarPubMed
Moebel, E., Martinez-Sanchez, A., Lamm, L., Righetto, R. D., Wietrzynski, W., Albert, S., Larivière, D., Fourmentin, E., Pfeffer, S., Ortiz, J., Baumeister, W., Peng, T., Engel, B. D., & Kervrann, C. (2021). Deep learning improves macromolecule identification in 3D cellular cryo-electron tomograms. Nature Methods, 18(11), Article 11. https://doi.org/10.1038/s41592-021-01275-4CrossRefGoogle ScholarPubMed
Mosalaganti, S., Obarska-Kosinska, A., Siggel, M., Taniguchi, R., Turoňová, B., Zimmerli, C. E., Buczak, K., Schmidt, F. H., Margiotta, E., Mackmull, M.-T., Hagen, W. J. H., Hummer, G., Kosinski, J., & Beck, M. (2022). AI-based structure prediction empowers integrative structural analysis of human nuclear pores. Science, 376(6598), eabm9506. https://doi.org/10.1126/science.abm9506CrossRefGoogle ScholarPubMed
Nerenberg, P. S., Jo, B., So, C., Tripathy, A., & Head-Gordon, T. (2012). Optimizing solute-water van der Waals interactions to reproduce solvation free energies. The Journal of Physical Chemistry. B, 116(15), 45244534. https://doi.org/10.1021/jp2118373CrossRefGoogle Scholar
O’Reilly, F. J., Graziadei, A., Forbrig, C., Bremenkamp, R., Charles, K., Lenz, S., Elfmann, C., Fischer, L., Stülke, J., & Rappsilber, J. (2023). Protein complexes in cells by AI-assisted structural proteomics. Molecular Systems Biology, 19(4), e11544. https://doi.org/10.15252/msb.202311544CrossRefGoogle ScholarPubMed
Oldfield, C. J., & Dunker, A. K. (2014). Intrinsically disordered proteins and intrinsically disordered protein regions. Annual Review of Biochemistry, 83, 553584. https://doi.org/10.1146/annurev-biochem-072711-164947CrossRefGoogle ScholarPubMed
Pasani, S., Menon, K. S., & Viswanath, S. (2024). The molecular architecture of the desmosomal outer dense plaque by integrative structural modeling. Protein Science, 33(12), e5217. https://doi.org/10.1002/pro.5217CrossRefGoogle ScholarPubMed
Pasani, S., & Viswanath, S. (2021). A framework for stochastic optimization of parameters for integrative modeling of macromolecular assemblies. Life, 11(11), Article 11. https://doi.org/10.3390/life11111183CrossRefGoogle ScholarPubMed
Peñaherrera, D., & Koes, D. R. (2024). Structure-Infused Protein Language Models. bioRxiv, https://doi.org/10.1101/2023.12.13.571525CrossRefGoogle Scholar
Pesce, F., Bremer, A., Tesei, G., Hopkins, J. B., Grace, C. R., Mittag, T., & Lindorff-Larsen, K. (2024). Design of intrinsically disordered protein variants with diverse structural properties. Science Advances, 10(35), eadm9926. https://doi.org/10.1126/sciadv.adm9926CrossRefGoogle ScholarPubMed
Petrovic, S., Samanta, D., Perriches, T., Bley, C. J., Thierbach, K., Brown, B., Nie, S., Mobbs, G. W., Stevens, T. A., Liu, X., Tomaleri, G. P., Schaus, L., & Hoelz, A. (2022). Architecture of the linker-scaffold in the nuclear pore. Science, 376(6598), eabm9798. https://doi.org/10.1126/science.abm9798CrossRefGoogle ScholarPubMed
Pitera, J. W., & Chodera, J. D. (2012). On the use of experimental observations to bias simulated ensembles. Journal of Chemical Theory and Computation, 8(10), 34453451. https://doi.org/10.1021/ct300112vCrossRefGoogle ScholarPubMed
Potrzebowski, W., Trewhella, J., & Andre, I. (2018). Bayesian inference of protein conformational ensembles from limited structural data. PLOS Computational Biology, 14(12), e1006641. https://doi.org/10.1371/journal.pcbi.1006641CrossRefGoogle ScholarPubMed
Pyle, E., & Zanetti, G. (2021). Current data processing strategies for cryo-electron tomography and subtomogram averaging. Biochemical Journal, 478(10), 18271845. https://doi.org/10.1042/BCJ20200715CrossRefGoogle ScholarPubMed
Rafiei, A., Cruz Tetlalmatzi, S., Edrington, C. H., Lee, L., Crowder, D. A., Saltzberg, D. J., Sali, A., Brouhard, G., & Schriemer, D. C. (2022). Doublecortin engages the microtubule lattice through a cooperative binding mode involving its C-terminal domain. eLife, 11, e66975. https://doi.org/10.7554/eLife.66975CrossRefGoogle ScholarPubMed
Rantos, V., Karius, K., & Kosinski, J. (2022). Integrative structural modeling of macromolecular complexes using assembline. Nature Protocols, 17(1), Article 1. https://doi.org/10.1038/s41596-021-00640-zCrossRefGoogle ScholarPubMed
Raveh, B., Sun, L., White, K. L., Sanyal, T., Tempkin, J., Zheng, D., Bharath, K., Singla, J., Wang, C., Zhao, J., Li, A., Graham, N. A., Kesselman, C., Stevens, R. C., & Sali, A. (2021). Bayesian metamodeling of complex biological systems across varying representations. Proceedings of the National Academy of Sciences, 118(35), e2104559118. https://doi.org/10.1073/pnas.2104559118CrossRefGoogle ScholarPubMed
Rice, G., Wagner, T., Stabrin, M., Sitsel, O., Prumbaum, D., & Raunser, S. (2023). TomoTwin: Generalized 3D localization of macromolecules in cryo-electron tomograms with structural data mining. Nature Methods, 20(6), Article 6. https://doi.org/10.1038/s41592-023-01878-zCrossRefGoogle ScholarPubMed
Rieping, W., Habeck, M., & Nilges, M. (2005). Inferential structure determination. Science, 309(5732), 303306. https://doi.org/10.1126/science.1110428CrossRefGoogle ScholarPubMed
Rives, A., Meier, J., Sercu, T., Goyal, S., Lin, Z., Liu, J., Guo, D., Ott, M., Zitnick, C. L., Ma, J., & Fergus, R. (2021). Biological structure and function emerge from scaling unsupervised learning to 250 million protein sequences. Proceedings of the National Academy of Sciences, 118(15), e2016239118. https://doi.org/10.1073/pnas.2016239118CrossRefGoogle ScholarPubMed
Robustelli, P., Piana, S., & Shaw, D. E. (2018). Developing a molecular dynamics force field for both folded and disordered protein states. Proceedings of the National Academy of Sciences of the United States of America, 115(21), E4758E4766. https://doi.org/10.1073/pnas.1800690115Google ScholarPubMed
Rout, M. P., & Sali, A. (2019). Principles for integrative structural biology studies. Cell, 177(6), 13841403. https://doi.org/10.1016/j.cell.2019.05.016CrossRefGoogle ScholarPubMed
Roux, B., & Weare, J. (2013). On the statistical equivalence of restrained-ensemble simulations with the maximum entropy method. The Journal of Chemical Physics, 138(8), 084107. https://doi.org/10.1063/1.4792208CrossRefGoogle ScholarPubMed
Różycki, B., Kim, Y. C., & Hummer, G. (2011). SAXS ensemble refinement of ESCRT-III CHMP3 conformational transitions. Structure (London, England: 1993), 19(1), 109116. https://doi.org/10.1016/j.str.2010.10.006CrossRefGoogle ScholarPubMed
Ruff, K. M., & Pappu, R. V. (2021). AlphaFold and implications for intrinsically disordered proteins. Journal of Molecular Biology, 433(20), 167208. https://doi.org/10.1016/j.jmb.2021.167208CrossRefGoogle ScholarPubMed
Russel, D., Lasker, K., Webb, B., Velázquez-Muriel, J., Tjioe, E., Schneidman-Duhovny, D., Peterson, B., & Sali, A. (2012). Putting the pieces together: integrative modeling platform software for structure determination of macromolecular assemblies. PLoS Biology, 10(1), e1001244. https://doi.org/10.1371/journal.pbio.1001244CrossRefGoogle ScholarPubMed
Sali, A. (2021). From integrative structural biology to cell biology. Journal of Biological Chemistry, 296, 100743. https://doi.org/10.1016/j.jbc.2021.100743CrossRefGoogle ScholarPubMed
Sali, A., Berman, H. M., Schwede, T., Trewhella, J., Kleywegt, G., Burley, S. K., Markley, J., Nakamura, H., Adams, P., Bonvin, A. M. J. J., Chiu, W., Peraro, M. D., Di Maio, F., Ferrin, T. E., Grünewald, K., Gutmanas, A., Henderson, R., Hummer, G., Iwasaki, K., & Westbrook, J. D. (2015). Outcome of the First wwPDB Hybrid/Integrative methods task force workshop. Structure, 23(7), 11561167. https://doi.org/10.1016/j.str.2015.05.013CrossRefGoogle ScholarPubMed
Sali, A., Glaeser, R., Earnest, T., & Baumeister, W. (2003). From words to literature in structural proteomics. Nature, 422(6928), 216225. https://doi.org/10.1038/nature01513CrossRefGoogle ScholarPubMed
Saltzberg, D. J., Viswanath, S., Echeverria, I., Chemmama, I. E., Webb, B., & Sali, A. (2021). Using integrative modeling platform to compute, validate, and archive a model of a protein complex structure. Protein Science, 30(1), 250261. https://doi.org/10.1002/pro.3995CrossRefGoogle Scholar
Salvi, N., Abyzov, A., & Blackledge, M. (2016). Multi-timescale dynamics in intrinsically disordered proteins from NMR relaxation and molecular simulation. The Journal of Physical Chemistry Letters, 7(13), 24832489. https://doi.org/10.1021/acs.jpclett.6b00885CrossRefGoogle ScholarPubMed
Schneidman-Duhovny, D., Pellarin, R., & Sali, A. (2014). Uncertainty in integrative structural modeling. Current Opinion in Structural Biology, 28, 96104. https://doi.org/10.1016/j.sbi.2014.08.001CrossRefGoogle ScholarPubMed
Schneidman-Duhovny, D., & Wolfson, H. J. (2020). Modeling of Multimolecular Complexes. In Gáspári, Z., Structural Bioinformatics. 2112, pp. 163174. Springer US. https://doi.org/10.1007/978-1-0716-0270-6_12CrossRefGoogle Scholar
Selcuk, K., Leitner, A., Braun, L., Le Blanc, F., Pacak, P., Pot, S., & Vogel, V. (2024). Transglutaminase 2 has higher affinity for relaxed than for stretched fibronectin fibers. Matrix Biology, 125, 113132. https://doi.org/10.1016/j.matbio.2023.12.006CrossRefGoogle ScholarPubMed
Shor, B., & Schneidman-Duhovny, D. (2024a). CombFold: Predicting structures of large protein assemblies using a combinatorial assembly algorithm and AlphaFold2. Nature Methods, 21(3), 477487. https://doi.org/10.1038/s41592-024-02174-0CrossRefGoogle ScholarPubMed
Shor, B., & Schneidman-Duhovny, D. (2024b). Integrative modeling meets deep learning: Recent advances in modeling protein assemblies. Current Opinion in Structural Biology, 87, 102841. https://doi.org/10.1016/j.sbi.2024.102841CrossRefGoogle ScholarPubMed
Shrestha, U. R., Smith, J. C., & Petridis, L. (2021). Full structural ensembles of intrinsically disordered proteins from unbiased molecular dynamics simulations. Communications Biology, 4(1), 18. https://doi.org/10.1038/s42003-021-01759-1CrossRefGoogle ScholarPubMed
Simons, K. T., Kooperberg, C., Huang, E., & Baker, D. (1997). Assembly of protein tertiary structures from fragments with similar local sequences using simulated annealing and bayesian scoring functions. Journal of Molecular Biology, 268(1), 209225. https://doi.org/10.1006/jmbi.1997.0959CrossRefGoogle ScholarPubMed
Singh, D., Soni, N., Hutchings, J., Echeverria, I., Shaikh, F., Duquette, M., Suslov, S., Li, Z., Van Eeuwen, T., Molloy, K., Shi, Y., Wang, J., Guo, Q., Chait, B. T., Fernandez-Martinez, J., Rout, M. P., Sali, A., & Villa, E. (2024). The molecular architecture of the nuclear basket. Cell, 187(19), 52675281.e13. https://doi.org/10.1016/j.cell.2024.07.020CrossRefGoogle ScholarPubMed
Slavin, M., Zamel, J., Zohar, K., Eliyahu, T., Braitbard, M., Brielle, E., Baraz, L., Stolovich-Rain, M., Friedman, A., Wolf, D. G., Rouvinski, A., Linial, M., Schneidman-Duhovny, D., & Kalisman, N. (2021). Targeted in situ cross-linking mass spectrometry and integrative modeling reveal the architectures of three proteins from SARS-CoV-2. Proceedings of the National Academy of Sciences, 118(34), e2103554118. https://doi.org/10.1073/pnas.2103554118CrossRefGoogle ScholarPubMed
Stahl, K., Graziadei, A., Dau, T., Brock, O., & Rappsilber, J. (2023). Protein structure prediction with in-cell photo-crosslinking mass spectrometry and deep learning. Nature Biotechnology, 110. https://doi.org/10.1038/s41587-023-01704-zGoogle ScholarPubMed
Stahl, K., Warneke, R., Demann, L., Bremenkamp, R., Hormes, B., Brock, O., Stülke, J., & Rappsilber, J. (2024). Modelling protein complexes with crosslinking mass spectrometry and deep learning. Nature Communications, 15(1), 7866. https://doi.org/10.1038/s41467-024-51771-2CrossRefGoogle ScholarPubMed
Sun, Y., & Shen, Y. (2023). Structure-informed protein language models are robust predictors for variant effects. Research Square , rs.3.rs-3219092. https://doi.org/10.21203/rs.3.rs-3219092/v1Google ScholarPubMed
Terwilliger, T. C., Afonine, P. V., Liebschner, D., Croll, T. I., McCoy, A. J., Oeffner, R. D., Williams, C. J., Poon, B. K., Richardson, J. S., Read, R. J., & Adams, P. D. (2023). Accelerating crystal structure determination with iterative AlphaFold prediction. Acta Crystallographica. Section D, Structural Biology, 79(3), 234244.10.1107/S205979832300102XCrossRefGoogle ScholarPubMed
Terwilliger, T. C., Poon, B. K., Afonine, P. V., Schlicksup, C. J., Croll, T. I., Millán, C., Richardson, J. S., Read, R. J., & Adams, P. D. (2022). Improved AlphaFold modeling with implicit experimental information. Nature Methods, 19(11), 13761382. https://doi.org/10.1038/s41592-022-01645-6CrossRefGoogle ScholarPubMed
Tesei, G., Trolle, A. I., Jonsson, N., Betz, J., Knudsen, F. E., Pesce, F., Johansson, K. E., & Lindorff-Larsen, K. (2024). Conformational ensembles of the human intrinsically disordered proteome. Nature, 626(8000), 897904. https://doi.org/10.1038/s41586-023-07004-5CrossRefGoogle ScholarPubMed
Thamkachy, R., Medina-Pritchard, B., Park, S. H., Chiodi, C. G., Zou, J., De La Torre-Barranco, M., Shimanaka, K., Abad, M. A., Gallego Páramo, C., Feederle, R., Ruksenaite, E., Heun, P., Davies, O. R., Rappsilber, J., Schneidman-Duhovny, D., Cho, U.-S., & Jeyaprakash, A. A. (2024). Structural basis for Mis18 complex assembly and its implications for centromere maintenance. EMBO Reports, 25(8), 33483372. https://doi.org/10.1038/s44319-024-00183-wCrossRefGoogle ScholarPubMed
Thomasen, F. E., Pesce, F., Roesgaard, M. A., Tesei, G., & Lindorff-Larsen, K. (2022). Improving martini 3 for disordered and multidomain proteins. Journal of Chemical Theory and Computation, 18(4), 20332041. https://doi.org/10.1021/acs.jctc.1c01042CrossRefGoogle ScholarPubMed
Trabuco, L. G., Villa, E., Mitra, K., Frank, J., & Schulten, K. (2008). Flexible fitting of atomic structures into electron microscopy maps using molecular dynamics. Structure (London, England: 1993), 16(5), 673683. https://doi.org/10.1016/j.str.2008.03.005CrossRefGoogle ScholarPubMed
Ullanat, V., Kasukurthi, N., & Viswanath, S. (2022). PrISM: Precision for integrative structural models. Bioinformatics, 38(15), 38373839. https://doi.org/10.1093/bioinformatics/btac400CrossRefGoogle ScholarPubMed
Vallat, B., Webb, B., Fayazi, M., Voinea, S., Tangmunarunkit, H., Ganesan, S. J., Lawson, C. L., Westbrook, J. D., Kesselman, C., Sali, A., & Berman, H. M. (2021). New system for archiving integrative structures. Acta Crystallographica Section D Structural Biology, 77(12), 14861496. https://doi.org/10.1107/S2059798321010871CrossRefGoogle ScholarPubMed
Viswanath, S., & Sali, A. (2019). Optimizing model representation for integrative structure determination of macromolecular assemblies. Proceedings of the National Academy of Sciences, 116(2), 540545. https://doi.org/10.1073/pnas.1814649116CrossRefGoogle ScholarPubMed
Vitalis, A., & Pappu, R. V. (2009). ABSINTH: A new continuum solvation model for simulations of polypeptides in aqueous solutions. Journal of Computational Chemistry, 30(5), 673699. https://doi.org/10.1002/jcc.21005CrossRefGoogle ScholarPubMed
Wang, D., Wang, Y., Evans, L., & Tiwary, P. (2024). From latent dynamics to meaningful representations. Journal of Chemical Theory and Computation, 20(9), 35033513. https://doi.org/10.1021/acs.jctc.4c00249CrossRefGoogle ScholarPubMed
Watson, J. L., Juergens, D., Bennett, N. R., Trippe, B. L., Yim, J., Eisenach, H. E., Ahern, W., Borst, A. J., Ragotte, R. J., Milles, L. F., Wicky, B. I. M., Hanikel, N., Pellock, S. J., Courbet, A., Sheffler, W., Wang, J., Venkatesh, P., Sappington, I., Torres, S. V., & Baker, D. (2023). De novo design of protein structure and function with RFdiffusion. Nature, 620(7976), Article 7976. https://doi.org/10.1038/s41586-023-06415-8CrossRefGoogle ScholarPubMed
Wilson, C. J., Choy, W.-Y., & Karttunen, M. (2022). AlphaFold2: A role for disordered protein/region prediction? International Journal of Molecular Sciences, 23(9), 4591. https://doi.org/10.3390/ijms23094591CrossRefGoogle ScholarPubMed
Wu, K. E., Yang, K. K., van den Berg, R., Alamdari, S., Zou, J. Y., Lu, A. X., & Amini, A. P. (2024). Protein structure generation via folding diffusion. Nature Communications, 15(1), 1059. https://doi.org/10.1038/s41467-024-45051-2CrossRefGoogle ScholarPubMed
Xu, M., Singla, J., Tocheva, E. I., Chang, Y.-W., Stevens, R. C., Jensen, G. J., & Alber, F. (2019). De novo structural pattern mining in cellular electron cryotomograms. Structure, 27(4), 679691.e14. https://doi.org/10.1016/j.str.2019.01.005CrossRefGoogle ScholarPubMed
Yu, M., Heidari, M., Mikhaleva, S., Tan, P. S., Mingu, S., Ruan, H., Reinkemeier, C. D., Obarska-Kosinska, A., Siggel, M., Beck, M., Hummer, G., & Lemke, E. A. (2023). Visualizing the disordered nuclear transport machinery in situ. Nature, 617(7959), 162169. https://doi.org/10.1038/s41586-023-05990-0CrossRefGoogle ScholarPubMed
Yu, Y., Li, S., Ser, Z., Sanyal, T., Choi, K., Wan, B., Kuang, H., Sali, A., Kentsis, A., Patel, D. J., & Zhao, X. (2021). Integrative analysis reveals unique structural and functional features of the Smc5/6 complex. Proceedings of the National Academy of Sciences, 118(19), e2026844118. https://doi.org/10.1073/pnas.2026844118CrossRefGoogle ScholarPubMed
Zeng, X., Kahng, A., Xue, L., Mahamid, J., Chang, Y.-W., & Xu, M. (2023). High-throughput cryo-ET structural pattern mining by unsupervised deep iterative subtomogram clustering. Proceedings of the National Academy of Sciences, 120(15), e2213149120. https://doi.org/10.1073/pnas.2213149120CrossRefGoogle ScholarPubMed
Zhang, O., Haghighatlari, M., Li, J., Liu, Z. H., Namini, A., Teixeira, J. M. C., Forman-Kay, J. D., & Head-Gordon, T. (2023). Learning to evolve structural ensembles of unfolded and disordered proteins using experimental solution data. The Journal of Chemical Physics, 158(17), 174113. https://doi.org/10.1063/5.0141474CrossRefGoogle ScholarPubMed
Zhang, Y., Zhang, Z., Kagaya, Y., Terashi, G., Zhao, B., Xiong, Y., & Kihara, D. (2023). Distance-AF: Modifying predicted protein structure models by Alphafold2 with user-specified distance constraints (p. 2023.12.01.569498). bioRxiv. https://doi.org/10.1101/2023.12.01.569498CrossRefGoogle Scholar
Zheng, S., He, J., Liu, C., Shi, Y., Lu, Z., Feng, W., Ju, F., Wang, J., Zhu, J., Min, Y., Zhang, H., Tang, S., Hao, H., Jin, P., Chen, C., Noé, F., Liu, H., & Liu, T.-Y. (2024). Predicting equilibrium distributions for molecular systems with deep learning. Nature Machine Intelligence, 6(5), 558567. https://doi.org/10.1038/s42256-024-00837-3CrossRefGoogle Scholar
Zhu, J., Li, Z., Zhang, B., Zheng, Z., Zhong, B., Bai, J., Wang, T., Wei, T., Yang, J., & Chen, H.-F. (2024). Precise generation of conformational ensembles for intrinsically disordered proteins using fine-tuned diffusion models. bioRxiv https://doi.org/10.1101/2024.05.05.592611CrossRefGoogle Scholar
Zhu, X., Huang, G., Zeng, C., Zhan, X., Liang, K., Xu, Q., Zhao, Y., Wang, P., Wang, Q., Zhou, Q., Tao, Q., Liu, M., Lei, J., Yan, C., & Shi, Y. (2022). Structure of the cytoplasmic ring of the Xenopus laevis nuclear pore complex. Science, 376(6598), eabl8280. https://doi.org/10.1126/science.abl8280CrossRefGoogle ScholarPubMed
Figure 0

Table 1. Integrative modeling software

Figure 1

Table 2. A table summarizing a representative subset of recent integrative modeling studies

Figure 2

Figure 1. Frontiers in integrative structure determination. Schematic describing integrative structure determination for the nucleosome remodeling and deacetylase complex (orange box) and the desmosomal outer dense plaque (green box) combining data from multiple sources. Input low-resolution cryo-EM and cryo-ET maps and intrinsically disordered regions in both complexes are highlighted in yellow.

Author comment: Frontiers in integrative structural modeling of macromolecular assemblies — R0/PR1

Comments

Editor, Perspectives in Integrated Biophysics, QRB Discovery

29th June 2024

Dear Editor,

We are pleased to submit an invited perspective entitled “Frontiers in integrative structural biology: modeling disordered proteins and utilizing in situ data” by Majila et. al. for your consideration of publication in QRB Discovery.

Integrative structural modeling combines data from experiments, physical principles, statistics of previous structures, and prior models to obtain structures of macromolecular assemblies that are challenging to characterize experimentally. Drawing upon our integrative modeling studies for characterizing a diverse range of assemblies, we highlight two challenges for current modelling methods: modeling disordered regions in assemblies and incorporating in situ data. We discuss the state-of-the-art and several interesting open questions in these two areas.

We very much hope you will find the manuscript worthy of review. We have suggested potential reviewers on the journal website.

Sincerely yours,

Shruthi Viswanath

Review: Frontiers in integrative structural modeling of macromolecular assemblies — R0/PR2

Conflict of interest statement

Reviewer declares none.

Comments

The review by Majila et al. presents a concise overview of the state-of-the-art in integrative structural biology, with a particular focus on the challenges in determining structural ensembles of disordered systems, like IDPs or IDRs, and utilising in situ data, such as cryo-electron tomography. This review is extremely timely and will be very informative for new researchers approaching the field. However, while I understand the difficulty of providing a comprehensive overview in the limited space available, I personally find that some key players and publications in the field are not sufficiently represented. In particular (and with the reassurance that none of the reference mentioned below is from this reviewer):

1) when discussing generation of IDPs ensembles with in silico approaches, the work by Kresten Lindorff-Larsen (in particular this: https://doi.org/10.1038/s41586-023-07004-5) and Alex Holehouse (https://doi.org/10.1038/s41592-023-02159-5) labs should be mentioned

2) when discussing integrative approaches for IDP ensembles determination, the work by the labs of Kresten Lindorff-Larsen, Gerhard Hummer, Teresa Head-Gordon, Giovanni Bussi, John Chodera, Martin Blackledge (as bare minimum), should be mentioned

Finally, I think that this review would be even more informative if two tables were added to the manuscript:

1) a Table summarising the software available for integrative structure determination, with minimal information, such as Authors, reference publication, URL;

2) a Table summarising some of the recent macromolecular complexes determined by integrative approaches, with informations such as Authors, reference publication, software used, data used. This table would make a more comprehensive overview compared to the few examples mentioned in the manuscript

Review: Frontiers in integrative structural modeling of macromolecular assemblies — R0/PR3

Conflict of interest statement

Reviewer declares none.

Comments

Kartik Majila et al. wrote a perspective about integrative structural modelling and integration of various experimental and computational methods of disordered proteins. The article is well written, it is an informative source and most citations are up to date. There are a few minor corrections the reviewer would like to highlight:

1) Since authors mostly discuss examples from nuclear trafficking, gene expression regulation, and cell-cell adhesion, the reviewer believes the title of the manuscript should be less general than it is at the present and relate to the examples mentioned. IDPs exist everywhere and it authors describe only fraction of this broad subject. Then the title of the paragraph “Recent advances of integrative structures” will be implicitly more specific.

2) Authors introduce IDPs only in the third paragraph, since this is one of the main topics of this perspective, can authors move this part to introduction and then elaborate more with specific examples?

3) Can authors elaborate more on Alphafold and its recent advances and limitations when it comes to IDPs? i) Int J Mol Sci. 2022 May; 23(9): 4591. ii) J Mol Biol, 2021 Oct 1;433(20):167208, iii) Proc Natl Acad Sci USA, 2023 Oct 31;120(44):e2304302120.

4) Molecular dynamics flexible fitting (MDFF) is a standard method of integrative modelling. In this method the additional bias allows to fit the macromolecular assemblies into low or high resolution experimentally derived density maps. Can authors introduce this technique with appropriate citation and examples?

5) “Coarse-grained models that improve sampling by reducing the degrees of freedom have also been developed (Baratam & Srivastava, 2024; Baul et al., 2019; Joseph et al., 2021)” – can authors add original Martini force field (ff) citation since this is the most popular and broadly used model used. This ff includes parameters for protein, lipids, carbohydrates, small molecules, polymers and many more.

Decision: Frontiers in integrative structural modeling of macromolecular assemblies — R0/PR4

Comments

We have received two reviewers comments. They are both positive but suggested changes. Please have a look at it. Hope to receive your revised manuscript.

Author comment: Frontiers in integrative structural modeling of macromolecular assemblies — R1/PR5

Comments

Editor, Perspectives in Integrated Biophysics, QRB Discovery

12th Sep 2024

Dear Editor,

We are pleased to submit a revision to our invited perspective entitled “Frontiers in integrative structural modeling” by Majila et. al. for your consideration of publication in QRB Discovery.

We hope you and the reviewers will find the responses to the comments acceptable. Thank you again for the opportunity to submit our perspective on integrative structural biology.

Sincerely yours,

Shruthi Viswanath

Review: Frontiers in integrative structural modeling of macromolecular assemblies — R1/PR6

Conflict of interest statement

Reviewer declares none.

Comments

Authors addressed all reviewer comments, this article is suitable for publication in the present form.

Review: Frontiers in integrative structural modeling of macromolecular assemblies — R1/PR7

Conflict of interest statement

Reviewer declares none.

Comments

The authors addressed all my previous concerns and modified the manuscript.

Recommendation: Frontiers in integrative structural modeling of macromolecular assemblies — R1/PR8

Comments

No accompanying comment.

Decision: Frontiers in integrative structural modeling of macromolecular assemblies — R1/PR9

Comments

No accompanying comment.