Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-07T17:57:11.585Z Has data issue: false hasContentIssue false

Continuous Orthogonal Complement Functions and Distribution-Free Goodness of Fit Tests in Moment Structure Analysis

Published online by Cambridge University Press:  01 January 2025

Robert Jennrich*
Affiliation:
University of California, Los Angeles
Albert Satorra
Affiliation:
Universitat Pompeu Fabra, Barcelona
*
Requests for reprints should be sent to Robert Jennrich, University of California, Los Angeles, 3400 Purdue Ave., Los Angeles, CA, USA. E-mail: rij@stat.ucla.edu

Abstract

It is shown that for any full column rank matrix X0 with more rows than columns there is a neighborhood \documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$\mathcal{N}$\end{document} of X0 and a continuous function f on \documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$\mathcal{N}$\end{document} such that f(X) is an orthogonal complement of X for all X in \documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$\mathcal{N}$\end{document}. This is used to derive a distribution free goodness of fit test for covariance structure analysis. This test was proposed some time ago and is extensively used. Unfortunately, there is an error in the proof that the proposed test statistic has an asymptotic χ2 distribution. This is a potentially serious problem, without a proof the test statistic may not, in fact, be asymptoticly χ2. The proof, however, is easily fixed using a continuous orthogonal complement function. Similar problems arise in other applications where orthogonal complements are used. These can also be resolved by using continuous orthogonal complement functions.

Type
Original Paper
Copyright
Copyright © 2013 The Psychometric Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bollen, K.A., Maydeu-Olivares, A. (2007). A polychoric instrumental variable (PIV) estimator for structural equation models with categorical variables. Psychometrika, 72, 309326CrossRefGoogle Scholar
Browne, M.B. (1984). Asymptotically distribution-free methods for the analysis of covariance structures. British Journal of Mathematical & Statistical Psychology, 37, 6283CrossRefGoogle ScholarPubMed
Loomis, L.H., Sternberg, S. (1968). Advanced calculus, Reading: Addison WesleyGoogle Scholar
Satorra, A., Bentler, P.M. (2001). A scaled difference chi-squared test statistic for moment structure analysis. Psychometrika, 66, 507514CrossRefGoogle Scholar
Yuan, K., Bentler, P.M. (1997). Mean and covariance structure analysis: theoretical and practical improvements. Journal of the American Statistical Association, 92, 767774CrossRefGoogle Scholar