The authors recently discovered an error in (3.7) which is corrected below:
The last term in the equation was previously omitted. In the limit where $\alpha M \gg m$, this term vanishes so the conclusions of the paper and the one-way coupled model presented in (3.9) and (3.10) (and associated predictions throughout) are unaffected by this error. In fact, this term accounts for some of the previous underprediction of the two-way coupled model compared to the experimental results and thus slightly improves the agreement between the experiments and model in the range of experimental parameters explored. As such, we have reproduced figures 3(d), 4, 8 and 9 below using the corrected equations for the two-way coupled model. As $\alpha M$ and $m$ become closer in magnitude (for instance, with a lightweight nose or a larger nose radius), the influence of this missing term becomes more pronounced.
Figure 4. The scaled maximum impact force (a) and the time of the peak force (b) collapse along a single curve against the hydroelastic number $\textit {R}_{F}$ for experiments in which the impact speed, stiffness, nose radius and mass ratio are varied. The error bars, which are sometimes smaller than the marker size, show the standard deviation between at least three trials. The simplified prediction from the convolution integral in (3.17) (solid black lines) agrees well with the experiments (markers) and captures the critical hydroelastic factor near $\textit {R}_{F}\approx 2$ at which the peak force in the flexible case equals the peak force in the equivalent rigid case (horizontal line). The marker shape indicates the impactor mass ratio and nose radius in a given experiment while the colour and opacity indicate the stiffness and impact speed, respectively. The two-way coupled added mass model from (3.7) and (3.8) is also shown, which more accurately predicts the time of the peak force. The two-way model line style (dashed, dotted or dash-dotted) indicates the mass ratio and nose radius corresponding to a particular predicted curve as shown in the legend.
Figure 8. The scaled maximum impact force (a) and the time of the peak force (b) are plotted against the hydroelastic factor $\textrm {R}_{F}$ and compared with our model which is updated to include form drag. The error bars, which are sometimes smaller than the marker size, show the standard deviation between at least three experimental trials. The marker shape indicates the impactor mass ratio and nose radius in a given experiment while the colour and opacity indicate the stiffness and impact speed, respectively. The simplified prediction from the convolution integral in (3.17) is shown in the solid black lines and the two-way coupled added-mass model from (3.7) and (3.8) is also shown. The two-way model line style (dashed, dotted or dash-dotted) indicates the mass ratio and nose radius corresponding to a particular predicted curve as shown in the legend. The agreement with the theory improves compared to figure 9 when we update the added-mass function $\textrm {d}m/\textrm {d} x$ to include the contribution of form drag as shown in the inset panel in (b).