Hostname: page-component-669899f699-vbsjw Total loading time: 0 Render date: 2025-04-25T21:19:34.428Z Has data issue: false hasContentIssue false

Repeated short-term thermal stress and its impact on reproductive fitness in parthenium beetle, Zygogramma bicolorata (Coleoptera: Chrysomelidae)

Published online by Cambridge University Press:  02 December 2024

Arvind Kumar Patel
Affiliation:
Department of Zoology, Banaras Hindu University, Varanasi, 221005, India
Priyanka Yadav
Affiliation:
Department of Zoology, Banaras Hindu University, Varanasi, 221005, India
Bhupendra Kumar*
Affiliation:
Department of Zoology, Banaras Hindu University, Varanasi, 221005, India
*
Corresponding author: Bhupendra Kumar; Email: bhupendrakumar@bhu.ac.in

Abstract

Insects experience variable temperature conditions in their natural environment, making constant temperature conditions in studies unrealistic. To address this, we investigated the effects of repeated short-term heat stress (STH) and short-term cold stress (STC) conditions on the pre-oviposition, oviposition, and post-oviposition periods, as well as on fecundity and egg viability of the parthenium beetle, Zygogramma bicolorata Pallister (Coleoptera: Chrysomelidae). We found that pre-oviposition periods were shortest under STH conditions and at the optimal temperature and longest under STC conditions. Conversely, oviposition and post-oviposition periods were longest at the optimal temperature. Oviposition periods were shortest under STH, whereas post-oviposition periods were shortest under both STH and STC conditions. Age-specific fecundity trends were triangular, and egg-viability trends were plateau-shaped at all temperatures. Females subjected to STH conditions experienced the highest oviposition peaks early in their adult life. Conversely, lifetime fecundity and longevity were highest at the optimal temperature, whereas egg viability was maximal under STH conditions. Regardless of the temperature they were maintained at, middle-aged females exhibited the highest fecundity and egg viability. Based on these results, despite reducing overall fecundity and longevity, STH conditions enhanced daily oviposition in females, with the peak occurring early in adult life. Additionally, both STH and STC conditions increased percentage egg viability in parthenium beetles.

Type
Research Paper
Copyright
© The Author(s), 2024. Published by Cambridge University Press on behalf of Entomological Society of Canada

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

Footnotes

Subject editor: Katie Marshall

References

Augustine, N.M. and Shera, P.S. 2024. Effect of cold storage on the fitness of Fulgoraecia melanoleuca (Fletcher) (Lepidoptera: Epipyropidae), an ecto-parasitoid of Pyrilla perpusilla (Walker) (Hemiptera: Lophopidae). International Journal of Pest Management, 71: 113.CrossRefGoogle Scholar
Bale, J.S., Masters, G.J., Hodkinson, I.D., Awmack, C., Bezemer, T.M., Brown, V.K., et al. 2002. Herbivory in global climate change research: direct effects of rising temperature on insect herbivores. Global Change Biology, 8: 116.CrossRefGoogle Scholar
Bali, K., Gupta, R.K., Pervez, A., Guroo, M.A., Gupta, A., and Gani, M. 2022. Variation in reproductive attributes and diapause behaviour among six populations of Zygogramma bicolorata Pallister. International Journal of Tropical Insect Science, 42: 755765.CrossRefGoogle Scholar
Baur, J., Jagusch, D., Michalak, P., Koppik, M., and Berger, D. 2022. The mating system affects the temperature sensitivity of male and female fertility. Functional Ecology, 36: 92106.CrossRefGoogle Scholar
Bhusal, D.R., Ghimire, K.C., Patel, P., Bista, M., Upadhyay, R., and Kumar, B. 2020. Temperature and altitude modulate feeding attributes of Mexican beetle, Zygogramma bicolorata Pallister on Parthenium hysterophorus . Journal of Thermal Biology, 89: 102540.CrossRefGoogle ScholarPubMed
Blanckenhorn, W.U. and Henseler, C. 2005. Temperature-dependent ovariole and testis maturation in the yellow dung fly. Entomologia Experimentalis et Applicata, 116: 159165.CrossRefGoogle Scholar
Buckley, L.B., Arakaki, A.J., Cannistra, A.F., Kharouba, H.M., and Kingsolver, J.G. 2017. Insect development, thermal plasticity and fitness implications in changing, seasonal environments. Integrative and Comparative Biology, 57: 988998.CrossRefGoogle ScholarPubMed
Butler, C.D. and Trumble, J.T. 2010. Predicting population dynamics of the parasitoid Cotesia marginiventris (Hymenoptera: Braconidae) resulting from novel interactions of temperature and selenium. Biocontrol Science and Technology, 20: 391406.CrossRefGoogle Scholar
Calabrese, E.J. 2001. Overcompensation stimulation: a mechanism for hormetic effects. Critical Reviews in Toxicology, 31: 425470.CrossRefGoogle ScholarPubMed
Carroll, A.L. and Quiring, D.T. 1993. Interactions between size and temperature influence fecundity and longevity of a tortricid moth, Zeiraphera canadensis . Oecologia, 93: 233241.CrossRefGoogle ScholarPubMed
Chidawanyika, F., Nyamukondiwa, C., Strathie, L., and Fischer, K. 2017. Effects of thermal regimes, starvation and age on heat tolerance of the parthenium beetle Zygogramma bicolorata (Coleoptera: Chrysomelidae) following dynamic and static protocols. PLOS One, 12: e0169371.CrossRefGoogle ScholarPubMed
Clissold, F.J. and Simpson, S.J. 2015. Temperature, food quality and life history traits of herbivorous insects. Current Opinion in Insect Science, 11: 6370.CrossRefGoogle ScholarPubMed
Colinet, H., Sinclair, B.J., Vernon, P., and Renault, D. 2015. Insects in fluctuating thermal environments. Annual Review of Entomology, 60: 123140.CrossRefGoogle ScholarPubMed
Cutler, G.C., Amichot, M., Benelli, G., Guedes, R.N.C., Qu, Y., Rix, R.R., et al. 2022. Hormesis and insects: effects and interactions in agroecosystems. Science of the Total Environment, 825: 153899.CrossRefGoogle ScholarPubMed
Davidson, J. 1944. On the relationship between temperature and rate of development of insects at constant temperatures. The Journal of Animal Ecology, 13: 2638.CrossRefGoogle Scholar
Deal, J. 1941. The Temperature Preferendum of Certain Insects. The Journal of Animal Ecology, 10: 323356.CrossRefGoogle Scholar
Denlinger, D.L. and Lee, R.E. Jr 2010. Low temperature biology of insects. Cambridge University Press, Cambridge, United Kingdom.CrossRefGoogle Scholar
Denlinger, D.L. and Yocum, G.D. 2019. Physiology of heat sensitivity. In Temperature Sensitivity in Insects and Application in Integrated Pest Management. Edited by Hallman, G.J. and Denlinger, D.L.. CRC Press, Boca Raton, Florida, United States. Pp. 753.CrossRefGoogle Scholar
Dhileepan, K., Setter, S., and Mcfadyen, R.E. 2000. Response of the weed Parthenium hysterophorus (Asteraceae) to defoliation by the introduced biocontrol agent Zygogramma bicolorata (Coleoptera: Chrysomelidae). Biological Control, 19: 916.CrossRefGoogle Scholar
Dixon, A.F.G. and Agarwala, B.K. 2002. Triangular fecundity function and ageing in ladybird beetles. Ecological Entomology, 27: 433440.CrossRefGoogle Scholar
Ebrahimi, N., Talebi, A.A., and Fathipour, Y. 2020. Effect of short-term high temperature stress on demographic parameters of Plutella xylostella (Lepidoptera: Plutellidae). Journal of Crop Protection, 9: 507522.Google Scholar
Economos, A.C. and Lints, F.A. 1986. Developmental temperature and life span in Drosophila melanogaster. II: Oscillating temperature. Gerontology, 32: 2836.CrossRefGoogle ScholarPubMed
Fan, X.J., Chen, D., Sun, Z., Tang, S., Wang, X., Ren, G., and Wang, X. 2014. Effects of brief exposure to high temperatures on the development, reproduction and feeding behaviour of Myzus persicae (Hemiptera: Aphididae). Acta Entomologica Sinica, 57: 11881197.Google Scholar
Fischer, K., Eenhoorn, E., Bot, A.N., Brakefield, P.M., and Zwaan, B.J. 2003. Cooler butterflies lay larger eggs: developmental plasticity versus acclimation. Proceedings of the Royal Society B: Biological Sciences, 270: 20512056.CrossRefGoogle ScholarPubMed
Glatz, J., Du Plessis, H., and Van den Berg, J. 2017. The effect of temperature on the development and reproduction of Busseola fusca (Lepidoptera: Noctuidae). Bulletin of Entomological Research, 107: 3948.CrossRefGoogle ScholarPubMed
Goller, F. and Esch, H. 1990. Comparative study of chill-coma temperatures and muscle potentials in insect flight muscles. Journal of Experimental Biology, 150: 221231.CrossRefGoogle Scholar
González-Tokman, D., Córdoba-Aguilar, A., Dáttilo, W., Lira-Noriega, A., Sánchez-Guillén, R.A., and Villalobos, F. 2020. Insect responses to heat: physiological mechanisms, evolution and ecological implications in a warming world. Biological Reviews, 95: 802821.CrossRefGoogle Scholar
Gu, L.L., Li, M.Z., Wang, G.R., and Liu, X.D. 2019. Multigenerational heat acclimation increases thermal tolerance and expression levels of Hsp70 and Hsp90 in the rice leaf folder larvae. Journal of Thermal Biology, 81: 103109.CrossRefGoogle ScholarPubMed
Hale, J.M., Elgar, M.A., and Jones, T.M. 2008. Sperm quantity explains age-related variation in fertilization success in the hide beetle. Ethology, 114: 797807.CrossRefGoogle Scholar
Hoffmann, A.A., Sørensen, J.G., and Loeschcke, V. 2003. Adaptation of Drosophila to temperature extremes: bringing together quantitative and molecular approaches. Journal of Thermal Biology, 28: 175216.CrossRefGoogle Scholar
Huang, L.H., Chen, B., and Kang, L. 2007. Impact of mild temperature hardening on thermotolerance, fecundity, and Hsp gene expression in Liriomyza huidobrensis . Journal of Insect Physiology, 53: 11991205.CrossRefGoogle ScholarPubMed
Huang, Y., Gu, X., Peng, X., Tao, M., Chen, G., and Zhang, X. 2020. Effect of short-term high temperatures on the growth, development and reproduction in the fruit fly, Bactrocera tau (Diptera: Tephritidae). Scientific Reports, 10: 6418.CrossRefGoogle Scholar
Huang, Y., McPherson, J., Jiggins, C.D., and Montejo-Kovacevich, G. 2024. Heat stress–reduced survival but sped up development in Heliconius erato butterflies. Physiological Entomology, 49: 136145.CrossRefGoogle Scholar
Huey, R.B., Wakefield, C.W.D., and Gilchrist, G.W. 1995. Within- and between-generation effects of temperature on early fecundity of Drosophila melanogaster . Heredity, 74: 216223.CrossRefGoogle ScholarPubMed
Jafari, M., Aghdam, H.R., Zamani, A.A., Goldasteh, S., Soleyman-Nejadian, E., and Schausberger, P. 2023. Thermal oviposition performance of the ladybird Stethorus gilvifrons preying on two-spotted spider mites. Insects, 14: 199.CrossRefGoogle ScholarPubMed
Jalali, M.A., Tirry, L., and De Clercq, P. 2009. Effects of food and temperature on development, fecundity and life-table parameters of Adalia bipunctata (Coleoptera: Coccinellidae). Journal of Applied Entomology, 133: 615625.CrossRefGoogle Scholar
Javoiš, J. and Tammaru, T. 2004. Reproductive decisions are sensitive to cues of life expectancy: the case of a moth. Animal Behaviour, 68: 249255.CrossRefGoogle Scholar
Jayanth, K.P. and Nagarkatti, S. 1987. Investigations on the host specificity and damage potential of Zygogramma bicolorata Pallister (Coleoptera: Coccinellidae) introduced into India for the biological control of Parthenium hysterophorus . Entomon, 12: 141145.Google Scholar
Jensen, J.L. 1906. Sur les fonctions convexes et les inégualités entre les valeurs moyennes [On convex functions and inequalities between mean values]. Acta Mathematica, 30: 175193.CrossRefGoogle Scholar
Jervis, M.A., Boggs, C.L., and Ferns, P.N. 2005. Egg maturation strategy and its associated trade-offs: a synthesis focusing on Lepidoptera. Ecological Entomology, 30: 359375.CrossRefGoogle Scholar
Jia, F.X., Dou, W., Hu, F., and Wang, J.J. 2011. Effects of thermal stress on lipid peroxidation and antioxidant enzyme activities of oriental fruit fly, Bactrocera dorsalis (Diptera: Tephritidae). Florida Entomologist, 94: 956963.CrossRefGoogle Scholar
Kelty, J.D. and Lee, R.E. 2001. Rapid cold-hardening of Drosophila melanogaster (Diptera: Drosophilidae) during ecologically based thermoperiodic cycles. Journal of Experimental Biology, 204: 16591666.CrossRefGoogle ScholarPubMed
Kjærsgaard, A., Pertoldi, C., Loeschcke, V., and Blanckenhorn, W.U. 2013. The effect of fluctuating temperatures during development on fitness-related traits of Scatophaga stercoraria (Diptera: Scathophagidae). Environmental Entomology, 42: 10691078.CrossRefGoogle ScholarPubMed
Lee, J., Baek, S., Kang, C., Lee, Y.S., Lee, Y., and Lee, J.H. 2018. Temperature-dependent development and oviposition models of Ramulus irregulariterdentatus (Phasmida: Phasmatidae). Journal of Asia-Pacific Entomology, 21: 903913.CrossRefGoogle Scholar
Li, W.Z., Li, H.L., Guo, Z.K., and Shang, S.Q. 2021. Effects of short-term heat stress on the development and reproduction of predatory mite Neoseiulus barkeri (Acari, Phytoseiidae). Systematic and Applied Acarology, 26: 713723.CrossRefGoogle Scholar
Liao, J., Liu, J., and Li, C. 2022. Effects of repeated short-term heat exposure on life history traits of Colorado potato beetle. Insects, 13: 455.CrossRefGoogle ScholarPubMed
Marshall, K.E. and Sinclair, B.J. 2010. Repeated stress exposure results in a survival–reproduction trade-off in Drosophila melanogaster . Proceedings of the Royal Society B: Biological Sciences, 277: 963969.CrossRefGoogle Scholar
Marshall, K.E. and Sinclair, B.J. 2012. The impacts of repeated cold exposure on insects. Journal of Experimental Biology, 215: 16071613.CrossRefGoogle ScholarPubMed
Martin, T.L. and Huey, R.B. 2008. Why “suboptimal” is optimal: Jensen’s inequality and ectotherm thermal preferences. The American Naturalist, 171: E102E118.CrossRefGoogle ScholarPubMed
McFadyen, R.E. and McClay, A.S. 1981. Two new insects for the biological control of parthenium weed in Queensland. Proceedings of the Sixth Australian Weeds Conference, 1: 145149.Google Scholar
Mironidis, G.K. and Savopoulou-Soultani, M. 2010. Effects of heat shock on survival and reproduction of Helicoverpa armigera (Lepidoptera: Noctuidae) adults. Journal of Thermal Biology, 35: 5969.CrossRefGoogle ScholarPubMed
Mirth, C.K., Saunders, T.E., and Amourda, C. 2021. Growing up in a changing world: environmental regulation of development in insects. Annual Review of Entomology, 66: 8199.CrossRefGoogle Scholar
Moore, P.J. and Moore, A.J. 2001. Reproductive ageing and mating: the ticking of the biological clock in female cockroaches. Proceedings of the National Academy of Sciences, 98: 91719176.CrossRefGoogle ScholarPubMed
Nobuhiro, M. 2002. Influence of starvation and temperature on adult survival of Mexican bean beetle, Epilachna varivestis Mulsant. Research Bulletin of the Plant Protection Service of Japan, 38: 2731.Google Scholar
Obata, S. 1988. Mating refusal and its significance in females of the ladybird beetle, Harmonia axyridis . Physiological Entomology, 13: 193199.CrossRefGoogle Scholar
Omkar, and Afaq, U. 2013. Evaluation of Darwin’s fecundity advantage hypothesis in parthenium beetle, Zygogramma bicolorata . Insect Science, 20: 531540.Google ScholarPubMed
Omkar, , Pandey, P., Rastogi, S., and Mishra, G. 2010. Influence of age at mating on the reproductive performance of parthenium beetle, Zygogramma bicolorata (Coleoptera: Chrysomelidae). Insect Science, 17: 112120.CrossRefGoogle Scholar
Omkar, , Rastogi, S., and Pandey, P. 2009. Effect of temperature on reproductive attributes of the Mexican beetle Zygogramma bicolorata (Coleoptera: Chrysomelidae). International Journal of Tropical Insect Science, 29: 4852.CrossRefGoogle Scholar
Omkar, , Singh, S.K., Pervez, A., and Mishra, G. 2004. Age-specific fecundity and natality life-table of an aphidophagous ladybird, Cheilomenes sexmaculata . Biological Memoirs, 30: 2025.Google Scholar
Omkar, , Singh, S.K., and Singh, K. 2006. Effect of age on reproductive attributes of an aphidophagous ladybird, Cheilomenes sexmaculata . Insect Science, 13: 301308.CrossRefGoogle Scholar
Ormanoğlu, N., Baliota, G.V., Rumbos, C.I., and Athanassiou, C.G. 2023. Effect of temperature on the oviposition and egg hatching performance of Alphitobius diaperinus (Panzer) (Coleoptera: Tenebrionidae). Journal of Insects as Food and Feed, 1: 110.Google Scholar
Pandey, P. and Omkar, . 2013. Age-based mate choice improves reproductive performance and offspring attributes in parthenium beetle, Zygogramma bicolorata (Coleoptera: Chrysomelidae). The Canadian Entomologist, 145: 292301. https://doi.org/10.4039/tce.2012.98.CrossRefGoogle Scholar
Patel, P., Bhusal, D.R., Kumar, B., and Kumar, D. 2020. Life attributes of Zygogramma bicolorata Pallister (Coleoptera: Chrysomelidae): challenges and future directions. Biocontrol Science and Technology, 30: 160177.CrossRefGoogle Scholar
Paul, S. and Keshan, B. 2016. Ovarian development and vitellogenin gene expression under heat stress in silkworm, Bombyx mori . Psyche, 2016: 4242317.Google Scholar
Pervez, A. and Omkar, O. 2004. Temperature-dependent life attributes of an aphidophagous ladybird beetle, Propylea dissecta (Mulsant). Biocontrol Science and Technology, 14: 665673.Google Scholar
Pervez, A., Omkar, , and Richmond, A.S. 2004. The influence of age on reproductive performance of a predatory ladybird beetle, Propylea dissecta . Journal of Insect Science, 4: 18.CrossRefGoogle ScholarPubMed
Phoofolo, M.W., Obrycki, J.J., and Krafsur, E.S. 1995. Temperature-dependent ovarian development in Coccinella septempunctata (Coleoptera: Coccinellidae). Annals of the Entomological Society of America, 88: 7279.CrossRefGoogle Scholar
Rahmani, H., Fathipour, Y., and Kamali, K. 2009. Life history and population growth parameters of Neoseiulus californicus (Acari: Phytoseiidae) fed on Thrips tabaci (Thysanoptera: Thripidae) in laboratory conditions. Systematic and Applied Acarology, 14: 91100.CrossRefGoogle Scholar
Renault, D. 2011. Long-term after-effects of cold exposure in adult Alphitobius diaperinus (Tenebrionidae): the need to link survival ability with subsequent reproductive success. Ecological Entomology, 36: 3642.CrossRefGoogle Scholar
Saha, R.S., Bangadkar, M.K., and Raja, I.A. 2015. Effect of temperature variation on reproductive behaviour of Zygogramma bicolarata: a potential biocontrol agent of Parthenium hysterophorus . Journal of Soils and Crops, 25: 297299.Google Scholar
Sales, K., Vasudeva, R., and Gage, M.J. 2021. Fertility and mortality impacts of thermal stress from experimental heatwaves on different life stages and their recovery in a model insect. Royal Society Open Science, 8: 201717.CrossRefGoogle Scholar
Sampaio, F., Batista, M.M., and Marchioro, C.A. 2024. Temperature-dependent reproduction of Spodoptera eridania: developing an oviposition model for a novel invasive species. Pest Management Science, 80: 11181125.CrossRefGoogle ScholarPubMed
Sarkar, N. and Barik, A. 2017. Effect of temperature on development and reproduction of Epilachna dodecastigma (Wied.) (Coleoptera: Coccinellidae). Proceedings of the Zoological Society, 70: 150155.CrossRefGoogle Scholar
Sarmad, M., Shakoor, M.W., and Zaka, S.M. 2023. Effect of temperature fluctuation on some biological parameters of Dysdercus koenigii (F.). Journal of the Kansas Entomological Society, 95: 2130.CrossRefGoogle Scholar
Singh, G., Singh, A.K., Yadav, S.K., Giri, S.K., and Verma, K. 2018. Studies on correlation between populations of major insect-pests with abiotic factors. Journal of Entomology and Zoology Studies, 6: 16791681.Google Scholar
Singh, K. and Omkar, . 2009. Effect of parental ageing on offspring developmental and survival attributes in an aphidophagous ladybird, Cheilomenes sexmaculata . Journal of Applied Entomology, 133: 500504.CrossRefGoogle Scholar
Skendžić, S., Zovko, M., Živković, I.P., Lešić, V., and Lemić, D. 2021. The impact of climate change on agricultural insect pests. Insects, 12: 440.CrossRefGoogle ScholarPubMed
Sørensen, J.G., Sarup, P., Kristensen, T.N., and Loeschcke, V. 2008. Temperature-induced hormesis in Drosophila. Chapter 5. In Mild Stress and Healthy Aging. Edited by Le Bourg, E. and Rattan, S.I.S.. Springer, Dordrecht, The Netherlands. Pp. 6579.CrossRefGoogle Scholar
Storey, K.B. and Storey, J.M. 2004. Metabolic rate depression in animals: transcriptional and translational controls. Biological Reviews of the Cambridge Philosophical Society, 79: 207233.CrossRefGoogle ScholarPubMed
Terada, K., Matsumura, K., and Miyatake, T. 2019. Effects of temperature during successive generations on life-history traits in a seed beetle, Callosobruchus chinensis (Chrysomelidae: Coleoptera). Applied Entomology and Zoology, 54: 459464.CrossRefGoogle Scholar
Terblanche, J.S. 2014. Physiological performance of field-released insects. Current Opinion in Insect Science, 4: 6066.CrossRefGoogle ScholarPubMed
Terblanche, J.S., Nyamukondiwa, C., and Kleynhans, E. 2010. Thermal variability alters climatic stress resistance and plastic responses in a globally invasive pest, the Mediterranean fruit fly (Ceratitis capitata). Entomologia Experimentalis et Applicata, 137: 304315.CrossRefGoogle Scholar
Tomanek, L. and Zuzow, M.J. 2010. The proteomic response of the mussel congeners Mytilus galloprovincialis and M. trossulus to acute heat stress: implications for thermal tolerance limits and metabolic costs of thermal stress. Journal of Experimental Biology, 213: 35593574.CrossRefGoogle Scholar
Vasudeva, R. 2023. Experimental evidence for stronger impacts of larval but not adult rearing temperature on female fertility and lifespan in a seed beetle. Evolutionary Ecology, 37: 545567.CrossRefGoogle Scholar
Veeravel, R. and Baskaran, P. 1997. Functional and numerical responses of Coccinella transversalis Fab. and Cheilomenes sexmaculatus Fab. feeding on the melon aphid, Aphis gossypii Glov. Insect Science and Its Application, 17: 335339.Google Scholar
Wang, C.J., Wang, R., Yu, C.M., Dang, X.P., Sun, W.G., Li, Q.F., et al. 2021. Risk assessment of insect pest expansion in alpine ecosystems under climate change. Pest Management Science, 77: 31653178.CrossRefGoogle ScholarPubMed
Wang, G., Gordon, T.N., and Rainwater, S. 2008. Maximum voluntary temperature of insect larvae reveals differences in their thermal biology. Journal of Thermal Biology, 33: 380384.CrossRefGoogle Scholar
Worland, M.R. and Convey, P. 2001. Rapid cold hardening in Antarctic microarthropods. Functional Ecology, 15: 515524.CrossRefGoogle Scholar
Worner, S.P. 1992. Performance of phenological models under variable temperature regimes: consequences of the Kaufmann or rate summation effect. Environmental Entomology, 21: 689699.CrossRefGoogle Scholar
Xing, K., Hoffmann, A.A., Zhao, F., and Ma, C.S. 2019. Wide diurnal temperature variation inhibits larval development and adult reproduction in the diamondback moth. Journal of Thermal Biology, 84: 815.CrossRefGoogle ScholarPubMed
Xing, K. and Zhao, F. 2022. Acclimation effects of natural daily temperature variation on longevity, fecundity, and thermal tolerance of the diamondback moth (Plutella xylostella). Insects, 13: 309.CrossRefGoogle ScholarPubMed
Yu, C., Zhao, R., Zhou, W., Pan, Y., Tian, H., Yin, Z., and Chen, W. 2022. Fruit fly in a challenging environment: impact of short-term temperature stress on the survival, development, reproduction, and trehalose metabolism of Bactrocera dorsalis (Diptera: Tephritidae). Insects, 13: 753.CrossRefGoogle Scholar
Zeng, B., Lian, Y., Jia, J., Liu, Y., Wang, A., Yang, H., et al. 2022. Multigenerational effects of short-term high temperature on the development and reproduction of the Zeugodacus cucurbitae (Coquillett, 1899). Agriculture, 12: 954.CrossRefGoogle Scholar
Zeng, B., Zhu, W., Fu, Y., and Zhou, S. 2019. Response mechanism of oviposition and relevant protein expression of Bactrocera cucurbitae (Coquillet) to short-term high-temperature conditions. Neotropical Entomology, 48: 197206.CrossRefGoogle ScholarPubMed
Zhang, W., Chang, X.Q., Hoffmann, A., Zhang, S., and Ma, C.S. 2015. Impact of hot events at different developmental stages of a moth: the closer to adult stage, the less reproductive output. Scientific Reports, 5: 10436.CrossRefGoogle ScholarPubMed
Zhu, G., Xue, M., Luo, Y., Ji, G., Liu, F., Zhao, H., and Sun, X. 2017. Effects of short-term heat shock and physiological responses to heat stress in two Bradysia adults, Bradysia odoriphaga and Bradysia difformis . Scientific Reports, 7: 13381.CrossRefGoogle Scholar
Zhu, L., Wang, L., and Ma, C.S. 2019. Sporadic short temperature events cannot be neglected in predicting impacts of climate change on small insects. Journal of Insect Physiology, 112: 4856.CrossRefGoogle ScholarPubMed