Hostname: page-component-669899f699-g7b4s Total loading time: 0 Render date: 2025-04-25T21:57:45.223Z Has data issue: false hasContentIssue false

Efficient conversion of montmorillonite-derived porous nano-silica to nano-silicon for lithium-ion battery anodes

Published online by Cambridge University Press:  12 November 2024

Jing Du
Affiliation:
CAS Key Laboratory of Mineralogy and Metallogeny, Guangdong Provincial Key Laboratory of Mineral Physics and Materials, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China CAS Center for Excellence in Deep Earth Science, Guangzhou, 510640, China University of Chinese Academy of Sciences, Beijing, 100049, China
Jieyang Xie
Affiliation:
CAS Key Laboratory of Mineralogy and Metallogeny, Guangdong Provincial Key Laboratory of Mineral Physics and Materials, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China CAS Center for Excellence in Deep Earth Science, Guangzhou, 510640, China University of Chinese Academy of Sciences, Beijing, 100049, China
Shoushu Wei
Affiliation:
CAS Key Laboratory of Mineralogy and Metallogeny, Guangdong Provincial Key Laboratory of Mineral Physics and Materials, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China CAS Center for Excellence in Deep Earth Science, Guangzhou, 510640, China University of Chinese Academy of Sciences, Beijing, 100049, China
Tao Xiong
Affiliation:
CAS Key Laboratory of Mineralogy and Metallogeny, Guangdong Provincial Key Laboratory of Mineral Physics and Materials, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China CAS Center for Excellence in Deep Earth Science, Guangzhou, 510640, China University of Chinese Academy of Sciences, Beijing, 100049, China
Shiya He
Affiliation:
CAS Key Laboratory of Mineralogy and Metallogeny, Guangdong Provincial Key Laboratory of Mineral Physics and Materials, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China CAS Center for Excellence in Deep Earth Science, Guangzhou, 510640, China University of Chinese Academy of Sciences, Beijing, 100049, China
Haiming Huang
Affiliation:
CAS Key Laboratory of Mineralogy and Metallogeny, Guangdong Provincial Key Laboratory of Mineral Physics and Materials, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China CAS Center for Excellence in Deep Earth Science, Guangzhou, 510640, China University of Chinese Academy of Sciences, Beijing, 100049, China
Qingze Chen*
Affiliation:
CAS Key Laboratory of Mineralogy and Metallogeny, Guangdong Provincial Key Laboratory of Mineral Physics and Materials, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China CAS Center for Excellence in Deep Earth Science, Guangzhou, 510640, China University of Chinese Academy of Sciences, Beijing, 100049, China
Runliang Zhu
Affiliation:
CAS Key Laboratory of Mineralogy and Metallogeny, Guangdong Provincial Key Laboratory of Mineral Physics and Materials, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China CAS Center for Excellence in Deep Earth Science, Guangzhou, 510640, China University of Chinese Academy of Sciences, Beijing, 100049, China
Jianxi Zhu
Affiliation:
CAS Key Laboratory of Mineralogy and Metallogeny, Guangdong Provincial Key Laboratory of Mineral Physics and Materials, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China CAS Center for Excellence in Deep Earth Science, Guangzhou, 510640, China University of Chinese Academy of Sciences, Beijing, 100049, China
*
Corresponding author: Qingze Chen; Email: chenqingze@gig.ac.cn

Abstract

Nano-silicon has been regarded as the most promising anode material for next-generation lithium-ion batteries (LIBs). However, the preparation of nano-silicon suffers from high cost, complex procedures, and low yield, which hinders its commercial application. In this study, porous nano-silicon with particle sizes in the range of 50–100 nm was prepared through molten salt-assisted magnesiothermic reduction using porous nano-silica derived from clay minerals as the precursor. Through combining ball milling and acid activation, the synthesised nano-silica derived from montmorillonite exhibited smaller particle sizes (below 50 nm), higher specific surface area (647 m2 g–1), and total pore volume (0.71 cm3 g–1). This unique structure greatly facilitated the conversion efficiency of silica into nano-silicon by maximising the contact area between silica and magnesium powder and optimising the diffusion kinetics of magnesium atoms. When used as anodes in LIBs, the synthesised nano-silicon materials demonstrated a high specific capacity of up to 1222 mAh g–1 and an excellent capacity retention rate of 79% after 150 cycles at a current density of 0.5 A g–1. This method provides a novel approach for the cost-effective and large-scale production of nano-silicon materials for high-performance anodes.

Type
Article
Copyright
© The Author(s), 2024. Published by Cambridge University Press on behalf of The Mineralogical Society of the United Kingdom and Ireland.

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

Footnotes

Guest Editor: Anxu Sheng

This paper is part of a thematic set on Nanominerals and mineral nanoparticles

References

Alfonsetti, R., Lozzi, L., Passacantando, M., Picozzi, P. and Santucci, S. (1993) XPS studies on SiOx thin films. Applied Surface Science, 70, 222225.Google Scholar
Bao, Z., Weatherspoon, M.R., Shian, S., Cai, Y., Graham, P.D., Allan, S.M., Ahmad, G., Dickerson, M.B., Church, B.C. and Kang, Z. (2007) Chemical reduction of three-dimensional silica micro-assemblies into microporous silicon replicas. Nature, 446, 172175.Google ScholarPubMed
Bray, H.J., Redfern, S.A.T. and Clark, S.M. (1998) The kinetics of dehydration in Ca-montmorillonite; an in situ X-ray diffraction study. Mineralogical Magazine, 62, 647656.CrossRefGoogle Scholar
Chen, Q., Liu, S., Zhu, R., Wu, D., Fu, H., Zhu, J. and He, H. (2018a) Clay minerals derived nanostructured silicon with various morphology: Controlled synthesis, structural evolution, and enhanced lithium storage properties. Journal of Power Sources, 405, 6169.CrossRefGoogle Scholar
Chen, Q., Zhu, R., Fu, H., Ma, L., Zhu, J., He, H. and Deng, Y. (2018b) From natural clay minerals to porous silicon nanoparticles. Microporous and Mesoporous Materials, 260, 7683.CrossRefGoogle Scholar
Chen, Q., Zhu, R., Liu, S., Wu, D., Fu, H., Zhu, J. and He, H. (2018c) Self-templating synthesis of silicon nanorods from natural sepiolite for high-performance lithium-ion battery anodes. Journal of Materials Chemistry A, 6, 63566362.Google Scholar
Chen, Q., Wei, S., Zhu, R., Du, J., Xie, J., Huang, H., Zhu, J. and Guo, Z. (2023) Mechanochemical reduction of clay minerals to porous silicon nanoflakes for high-performance lithium-ion battery anodes. Chemical Communications, 59, 1429714300.CrossRefGoogle ScholarPubMed
Cheng, Z., Jiang, H., Zhang, X., Cheng, F., Wu, M. and Zhang, H. (2023) Fundamental understanding and facing challenges in structural design of porous Si‐based Anodes for lithium‐ion batteries. Advanced Functional Materials, 33, 2301109.CrossRefGoogle Scholar
Cui, Y. (2021) Silicon anodes. Nature Energy, 6, 995996.CrossRefGoogle Scholar
Dasog, M., Yang, Z. and Veinot, J.G. (2012) Size-controlled solid state synthesis of luminescent silicon nanocrystals using Stöber silica particles. CrystEngComm, 14, 75767578.Google Scholar
Dawei, L., Xilu, Y., Xianfeng, Q., Yanan, P. and Xiaoyan, L. (2023) Effects of HF acid on dissolution of elemental Si. Silicon, 15, 78777884.CrossRefGoogle Scholar
Delpuech, N., Mazouzi, D., Dupre, N., Moreau, P., Cerbelaud, M., Bridel, J., Badot, J.-C., De Vito, E., Guyomard, D. and Lestriez, B. (2014) Critical role of silicon nanoparticles surface on lithium cell electrochemical performance analyzed by FTIR, Raman, EELS, XPS, NMR, and BDS spectroscopies. The Journal of Physical Chemistry C, 118, 1731817331.CrossRefGoogle Scholar
Entwistle, J., Rennie, A. and Patwardhan, S. (2018) A review of magnesiothermic reduction of silica to porous silicon for lithium-ion battery applications and beyond. Journal of Materials Chemistry A, 6, 1834418356.Google Scholar
Fu, J., Liu, H., Liao, L., Fan, P., Wang, Z., Wu, Y., Zhang, Z., Hai, Y., Lv, G. and Mei, L. (2018) Ultrathin Si/CNTs paper-like composite for flexible Li-Ion battery anode with high volumetric capacity. Frontiers in Chemistry, 6, 624.CrossRefGoogle ScholarPubMed
Furquan, M., Khatribail, A.R., Vijayalakshmi, S. and Mitra, S. (2018) Efficient conversion of sand to nano-silicon and its energetic Si-C composite anode design for high volumetric capacity lithium-ion battery. Journal of Power Sources, 382, 5668.CrossRefGoogle Scholar
Gauthier, M., Mazouzi, D., Reyter, D., Lestriez, B., Moreau, P., Guyomard, D. and Roué, L. (2013) A low-cost and high performance ball-milled Si-based negative electrode for high-energy Li-ion batteries. Energy & Environmental Science, 6, 21452155.CrossRefGoogle Scholar
Ge, M., Rong, J., Fang, X. and Zhou, C. (2012) Porous doped silicon nanowires for lithium ion battery anode with long cycle life. Nano Letters, 12, 23182323.CrossRefGoogle ScholarPubMed
Georgiev, D., Kolev, K., Laude, L., Mednikarov, B. and Starbov, N. (1998) X-ray photoelectron spectroscopy study of excimer laser treated alumina films. Applied Physics Letters, 72, 3133.CrossRefGoogle Scholar
Green, M., Fielder, E., Scrosati, B., Wachtler, M. and Moreno, J.S. (2003) Structured silicon anodes for lithium battery applications. Electrochemical and Solid-State Letters, 6, A75-A79.Google Scholar
Gu, M., He, Y., Zheng, J. and Wang, C. (2015) Nanoscale silicon as anode for Li-ion batteries: The fundamentals, promises, and challenges. Nano Energy, 17, 366383.CrossRefGoogle Scholar
He, S., Zhu, R., Chen, Q., Tang, N., Ji, S., Wei, H., Du, J., Yang, Y. and Zhu, J. (2024) Development of a novel hierarchical porous and hydrophobic silica from montmorillonite for benzene adsorption. Separation and Purification Technology, 329, 125031.CrossRefGoogle Scholar
Himpsel, F., McFeely, F., Taleb-Ibrahimi, A., Yarmoff, J. and Hollinger, G. (1988) Microscopic structure of the SiO2/Si interface. Physical Review B, 38, 6084.CrossRefGoogle ScholarPubMed
Jerliu, B., Hüger, E., Dörrer, L., Seidlhofer, B.K., Steitz, R., Horisberger, M. and Schmidt, H. (2018) Lithium insertion into silicon electrodes studied by cyclic voltammetry and operando neutron reflectometry. Physical Chemistry Chemical Physics, 20, 2348023491.Google ScholarPubMed
Jia, H., Gao, P., Yang, J., Wang, J., Nuli, Y. and Yang, Z. (2011) Novel three‐dimensional mesoporous silicon for high power lithium‐ion battery anode material. Advanced Energy Materials, 1, 10361039.Google Scholar
Lan, Y., Liu, Y.Y., Li, J.W., Chen, D.J., He, G.J. and Parkin, I.P. (2021) Natural clay-based materials for energy storage and conversion applications. Advanced Science, 8, 2004036.CrossRefGoogle ScholarPubMed
Li, X., Gu, M., Hu, S., Kennard, R., Yan, P., Chen, X., Wang, C., Sailor, M.J., Zhang, J.-G. and Liu, J. (2014) Mesoporous silicon sponge as an anti-pulverization structure for high-performance lithium-ion battery anodes. Nature Communications, 5, 4105.CrossRefGoogle Scholar
Li, P., Kim, H., Myung, S.-T. and Sun, Y.-K. (2021) Diverting exploration of silicon anode into practical way: A review focused on silicon-graphite composite for lithium ion batteries. Energy Storage Materials, 35, 550576.Google Scholar
Li, H., Li, H., Lai, Y., Yang, Z., Yang, Q., Liu, Y., Zheng, Z., Liu, Y., Sun, Y., Zhong, B., et al. (2022) Revisiting the preparation progress of nano‐structured Si anodes toward industrial application from the perspective of cost and scalability. Advanced Energy Materials, 12, 2102181.CrossRefGoogle Scholar
Lin, Y., Jiang, J., Zhang, Y., He, X., Ren, J., He, P., Pang, C., Xiao, C., Yang, D. and Du, N. (2020) Promoting effect of Si–OH on the decomposition of electrolytes in lithium-ion batteries. Chemistry of Materials, 32, 63656373.CrossRefGoogle Scholar
Liu, B., Lu, H., Chu, G., Luo, F., Zheng, J., Chen, S. and Li, H. (2018) Size effect of Si particles on the electrochemical performances of Si/C composite anodes. Chinese Physics B, 27, 088201.CrossRefGoogle Scholar
Margarido, F., Figueiredo, M.O., Queiroz, A. and Martins, J. (1997) Acid leaching of alloys within the quaternary system Fe−Si−Ca−Al. Industrial & Engineering Chemistry Research, 36, 52915295.CrossRefGoogle Scholar
Meier, C., Lüttjohann, S., Kravets, V.G., Nienhaus, H., Lorke, A. and Wiggers, H. (2006) Raman properties of silicon nanoparticles. Physica E, 32, 155158.Google Scholar
Ogata, K., Jeon, S., Ko, D.S., Jung, I.S., Kim, J.H., Ito, K., Kubo, Y., Takei, K., Saito, S., Cho, Y.H., et al. (2018) Evolving affinity between Coulombic reversibility and hysteretic phase transformations in nano-structured silicon-based lithium-ion batteries. Nature Communications, 9, 479.Google ScholarPubMed
Ohtsu, N., Oku, M., Satoh, K. and Wagatsuma, K. (2013) Dependence of core-level XPS spectra on iron silicide phase. Applied Surface Science, 264, 219224.Google Scholar
Patterson, A. (1939) The Scherrer formula for X-ray particle size determination. Physical Review, 56, 978.CrossRefGoogle Scholar
Ren, G., Ding, H., Li, Y. and Lu, A. (2016) Natural hematite as a low-cost and earth-abundant cathode material for performance improvement of microbial fuel cells. Catalysts, 6, 157.Google Scholar
Roshani, M.M., Rostaminikoo, E., Joonaki, E., Dastjerdi, A.M., Najafi, B., Taghikhani, V. and Hassanpouryouzband, A. (2022) Applications of the quartz crystal microbalance in energy and environmental sciences: From flow assurance to nanotechnology. Fuel, 313, 122998.CrossRefGoogle Scholar
Ryu, J., Hong, D., Choi, S. and Park, S. (2016a) Synthesis of ultrathin Si nanosheets from natural clays for lithium-ion battery anodes. ACS Nano, 10, 28432851.CrossRefGoogle ScholarPubMed
Ryu, J., Hong, D., Shin, M. and Park, S. (2016b) Multiscale hyperporous silicon flake Anodes for high initial Coulombic efficiency and cycle stability. ACS Nano, 10, 1058910597.CrossRefGoogle ScholarPubMed
Su, X., Wu, Q., Li, J., Xiao, X., Lott, A., Lu, W., Sheldon, B.W. and Wu, J. (2013) Silicon‐based nanomaterials for lithium‐ion batteries: A review. Advanced Energy Materials, 4, 201300882.Google Scholar
Tan, Y., Jiang, T. and Chen, G.Z. (2021) Mechanisms and product options of magnesiothermic reduction of silica to silicon for lithium-ion battery applications. Frontiers in Energy Research, 9, 651386.CrossRefGoogle Scholar
Tang, W., Guo, X., Liu, X., Chen, G., Wang, H., Zhang, N., Wang, J., Qiu, G. and Ma, R. (2018) Interconnected silicon nanoparticles originated from halloysite nanotubes through the magnesiothermic reduction: A high-performance anode material for lithium-ion batteries. Applied Clay Science, 162, 499506.CrossRefGoogle Scholar
Wang, D. and Shi, Z. (2001) Aluminothermic reduction of silica for the synthesis of alumina-aluminum-silicon composite. Journal of Materials Synthesis and Processing, 9, 241246.Google Scholar
Wang, W., Favors, Z., Ionescu, R., Ye, R., Bay, H.H., Ozkan, M. and Ozkan, C.S. (2015) Monodisperse porous silicon spheres as anode materials for lithium ion batteries. Scientific reports, 5, 8781.Google ScholarPubMed
Wang, W., Wang, Y., Yuan, L., You, C., Wu, J., Liu, L., Ye, J., Wu, Y. and Fu, L. (2022) Recent advances in modification strategies of silicon-based lithium-ion batteries. Nano Research, 16, 37813803.CrossRefGoogle Scholar
Wang, Y., Wang, Q., Zhao, X., Zhang, C., Zhou, Y., Xie, W. and Ren, G. (2024) Carbon skeleton dispersed nano-jarosite for efficient Cr (VI) degradation: A bioinspired MFC cathode catalyst. Journal of Environmental Chemical Engineering, 12, 112003.Google Scholar
Wei, S., Chen, Q., Zhu, R., Du, J., Xie, J., Fu, H., Xiong, T., Liu, H. and Zhu, J. (2024) One-pot synthesis of interconnected carbon-coated silicon nanosheets from clay minerals for high-performance lithium-ion battery anodes. Applied Clay Science, 254, 107388.CrossRefGoogle Scholar
Wen, Z., Lu, G., Mao, S., Kim, H., Cui, S., Yu, K., Huang, X., Hurley, P.T., Mao, O. and Chen, J. (2013) Silicon nanotube anode for lithium-ion batteries. Electrochemistry Communications, 29, 6770.CrossRefGoogle Scholar
Wu, H. and Cui, Y. (2012) Designing nanostructured Si anodes for high energy lithium ion batteries. Nano Today, 7, 414429.CrossRefGoogle Scholar
Wu, F., Dong, Y., Su, Y., Wei, C., Chen, T., Yan, W., Ma, S., Ma, L., Wang, B., Chen, L., et al. (2023) Benchmarking the effect of particle size on silicon anode materials for lithium-ion batteries. Small, 19, e2301301.CrossRefGoogle ScholarPubMed
Xu, Z.-L., Gang, Y., Garakani, M.A., Abouali, S., Huang, J.-Q. and Kim, J.-K. (2016) Carbon-coated mesoporous silicon microsphere anodes with greatly reduced volume expansion. Journal of Materials Chemistry A, 4, 60986106.Google Scholar
Xu, Z.-L., Liu, X., Luo, Y., Zhou, L. and Kim, J.-K. (2017) Nanosilicon anodes for high performance rechargeable batteries. Progress in Materials Science, 90, 144.CrossRefGoogle Scholar
Yang, Z., Du, Y., Hou, G., Ouyang, Y., Ding, F. and Yuan, F. (2020) Nanoporous silicon spheres preparation via a controllable magnesiothermic reduction as anode for Li-ion batteries. Electrochimica Acta, 329, 135141.CrossRefGoogle Scholar
Yoo, J.K., Kim, J., Choi, M.J., Park, Y.U., Hong, J., Baek, K.M., Kang, K. and Jung, Y.S. (2014) Extremely high yield conversion from low-cost sand to high‐capacity Si electrodes for Li‐ion batteries. Advanced Energy Materials, 4, 1400622.CrossRefGoogle Scholar
Yuda, A.P., Koraag, P.Y.E., Iskandar, F., Wasisto, H.S. and Sumboja, A. (2021) Advances of the top-down synthesis approach for high-performance silicon anodes in Li-ion batteries. Journal of Materials Chemistry A, 9, 1890618926.CrossRefGoogle Scholar
Zeng, Z., Dong, Y., Yuan, S., Zhao, W., Wang, L., Liu, S., Yang, Y., Ge, P., Sun, W. and Ji, X. (2022) Natural mineral compounds in energy-storage systems: Development, challenges, prospects. Energy Storage Materials, 45, 442464.CrossRefGoogle Scholar
Zhu, G.J., Luo, W., Wang, L.J., Jiang, W. and Yang, J.P. (2019) Silicon: toward eco-friendly reduction techniques for lithium-ion battery applications. Journal of Materials Chemistry A, 7, 2471524737.CrossRefGoogle Scholar
Zuo, X., Zhu, J., Müller-Buschbaum, P. and Cheng, Y.-J. (2017) Silicon based lithium-ion battery anodes: A chronicle perspective review. Nano Energy, 31, 113143.CrossRefGoogle Scholar
Supplementary material: File

Du et al. supplementary material

Du et al. supplementary material
Download Du et al. supplementary material(File)
File 1.2 MB