Hostname: page-component-669899f699-rg895 Total loading time: 0 Render date: 2025-04-25T03:22:39.418Z Has data issue: false hasContentIssue false

Low protein uptake during peripuberty impairs the testis, epididymis, and spermatozoa in pubertal and adult Wistar rats

Published online by Cambridge University Press:  24 October 2024

Giovanna Fachetti Frigoli
Affiliation:
Laboratory of Toxicology and Metabolic Disturbs of Reproduction, General Biology Department, Biological Sciences Center, State University of Londrina, Londrina, Brazil
Débora Hipólito Quadreli
Affiliation:
Laboratory of Toxicology and Metabolic Disturbs of Reproduction, General Biology Department, Biological Sciences Center, State University of Londrina, Londrina, Brazil
Dayane Priscila dos Santos
Affiliation:
Laboratory of Toxicology and Metabolic Disturbs of Reproduction, General Biology Department, Biological Sciences Center, State University of Londrina, Londrina, Brazil
Ivana Regina da Costa
Affiliation:
Laboratory of Toxicology and Metabolic Disturbs of Reproduction, General Biology Department, Biological Sciences Center, State University of Londrina, Londrina, Brazil
Anna Rebeka Oliveira Ferreira
Affiliation:
Laboratory of Secretion Cell Biology, Department of Cell Biology and Genetics, Center of Biological Sciences, State University of Maringá, Maringá, Brazil
Maria Natália Chimirri Peres
Affiliation:
Laboratory of Secretion Cell Biology, Department of Cell Biology and Genetics, Center of Biological Sciences, State University of Maringá, Maringá, Brazil
Maiara Vanusa Guedes Ribeiro
Affiliation:
Laboratory of Secretion Cell Biology, Department of Cell Biology and Genetics, Center of Biological Sciences, State University of Maringá, Maringá, Brazil
Graziela Scalianti Ceravolo
Affiliation:
Laboratory of Vascular Pharmacology, Department of Physiological Sciences, Biological Sciences Center, State University of Londrina, Londrina, Brazil
Paulo Cezar Mathias
Affiliation:
Laboratory of Secretion Cell Biology, Department of Cell Biology and Genetics, Center of Biological Sciences, State University of Maringá, Maringá, Brazil
Kesia Palma-Rigo
Affiliation:
Laboratory of Secretion Cell Biology, Department of Cell Biology and Genetics, Center of Biological Sciences, State University of Maringá, Maringá, Brazil
Glaura Scantamburlo Alves Fernandes*
Affiliation:
Laboratory of Toxicology and Metabolic Disturbs of Reproduction, General Biology Department, Biological Sciences Center, State University of Londrina, Londrina, Brazil
*
Corresponding author: Glaura Scantamburlo Alves Fernandes; Email: glaura@uel.br

Abstract

Protein malnutrition during critical periods poses significant risks to reproductive health. Thus, this study aims to evaluate the immediate and delayed effects of a 30-day low-protein diet on the postnatal development of the male reproductive system. For so, male rats were fed a protein-deficient diet from postnatal day 30–60, followed by evaluations of testis, epididymis, and spermatozoa both at the end of the diet and after a 60-day recovery period. Testicular and epididymal weight was lowered in pubertal animals. Several histological alterations were found in the testis, such as acidophilic cells and vacuoles in the seminiferous epithelium, and sperm production was compromised. In the epididymis, the luminal compartment was diminished, and the stroma was enlarged both in the caput and cauda; in the cauda, the epithelial compartment was enlarged; the transit time of spermatozoa through this organ was diminished. Testosterone production was lowered. Spermatozoa’s motility, mitochondrial activation, and acrosomal integrity were impaired, and several alterations in morphology were observed. After the recovery period, testicular and epididymal weight was restored. Tissue remodulation was observed in the epididymis, but the spermatozoa’s transit time in this organ was not altered. Sperm and testosterone production, spermatozoa motility, mitochondrial activation, and acrosomal integrity were also restored. However, testicular histological alterations and spermatic morphological abnormalities were maintained in protein-restricted animals. Protein restriction during peripuberty impairs the reproductive maturation of pubertal Wistar rats, impairing testicular and epididymal function, with lasting effects even after dietary correction.

Type
Original Article
Copyright
© The Author(s), 2024. Published by Cambridge University Press in association with The International Society for Developmental Origins of Health and Disease (DOHaD)

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Olson, CM. Nutrition and health outcomes associated with food insecurity and hunger. J Nutr. 1999; 129(2), S521S524. DOI: 10.1093/jn/129.2.521S.CrossRefGoogle ScholarPubMed
Faye, O, Baschieri, A, Falkingham, J, Muindi, K. Hunger and food insecurity in Nairobi’s slums: an assessment using IRT models. J Urban Health. 2011; 88(S2), 235255. DOI: 10.1007/s11524-010-9521-x.CrossRefGoogle ScholarPubMed
FAO, IFAD, UNICEF, WFP, WHO. The State of Food Security and Nutrition in the World 2022. Repurposing food and agricultural policies to make healthy diets more affordable, 2022. FAO, Rome.Google Scholar
Paslakis, G, Dimitropoulos, G, Katzman, DK. A call to action to address COVID-19-induced global food insecurity to prevent hunger, malnutrition, and eating pathology. Nutr Rev. 2021; 79(1), 114116. DOI: 10.1093/nutrit/nuaa069.CrossRefGoogle Scholar
Owens, MR, Brito-Silva, F, Kirkland, T, et al. Prevalence and social determinants of food insecurity among college students during the COVID-19 pandemic. Nutrients. 2020; 12(9), 2515. DOI: 10.3390/nu12092515.CrossRefGoogle ScholarPubMed
Ahmed, T, Ilieva, RT, Shane, J, et al. A developing crisis in hunger: food insecurity within 3 Public colleges before and during the COVID-19 pandemic. J Hunger Environ Nutr. 2023; 18(1), 120. DOI: 10.1080/19320248.2022.2026853.CrossRefGoogle Scholar
Saunders, J, Smith, T. Malnutrition: causes and consequences. Clin Med J Royal Coll Phys London. 2010; 10(6), 624627. DOI: 10.7861/clinmedicine.10-6-624.Google ScholarPubMed
Barker, D, Eriksson, J, Forsén, T, Osmond, C. Fetal origins of adult disease: strength of effects and biological basis. Int J Epidemiol. 2002; 31(6), 12351239. DOI: 10.1093/ije/31.6.1235.CrossRefGoogle ScholarPubMed
Barker, DJP. The developmental origins of adult disease. J Am Coll Nutr. 2004; 23(6 Suppl), 588S595S. DOI: 10.1080/07315724.2004.CrossRefGoogle ScholarPubMed
de Oliveira, JC, Lisboa, PC, de Moura, EG, et al. Poor pubertal protein nutrition disturbs glucose-induced insulin secretion process in pancreatic islets and programs rats in adulthood to increase fat accumulation. J Endocrinol. 2013; 216(2), 195206. DOI: 10.1530/JOE-12-0408.CrossRefGoogle ScholarPubMed
de Oliveira, JC, de Moura, EG, Miranda, RA, et al. Low-protein diet in puberty impairs testosterone output and energy metabolism in male rats. J Endocrinol. 2018; 237(3), 243254. DOI: 10.1530/JOE-17-0606.CrossRefGoogle ScholarPubMed
Ferreira, ARO, Ribeiro, MVG, Peres, MNC, et al. Protein restriction in the peri-pubertal period induces autonomic dysfunction and cardiac and vascular structural changes in adult rats. Front Physiol. 2022; 13, 114. DOI: 10.3389/fphys.2022.840179.CrossRefGoogle ScholarPubMed
Ferreira, DS, Liu, Y, Fernandes, MP, Lagranha, CJ. Perinatal low-protein diet alters brainstem antioxidant metabolism in adult offspring. Nutr Neurosci. 2016; 19(8), 369375. DOI: 10.1179/1476830515Y.0000000030.CrossRefGoogle ScholarPubMed
de Jong, KA, Barrand, S, Wood-Bradley, RJ, et al. Maternal high fat diet induces cardiac hypertrophy and alters cardiac metabolism in Sprague Dawley rat offspring. Nutr Metab Cardiovasc Dis. 2018; 28(2), 600609.CrossRefGoogle ScholarPubMed
Nascimento, L, Freitas, CM, Silva-Filho, R, et al. The effect of maternal low-protein diet on the heart of adult offspring: role of mitochondria and oxidative stress. Appl Physiol Nutr Metab. 2014; 39(8), 880887. DOI: 10.1139/apnm-2013-0452.CrossRefGoogle ScholarPubMed
Galler, JR, Tonkiss, J. Prenatal protein malnutrition and maternal behavior in Sprague-Dawley rats. J Nutr. 1991; 121(5), 762769. DOI: 10.1093/jn/121.5.762.CrossRefGoogle ScholarPubMed
Langley, SC, Jackson, AA. Increased systolic blood pressure in adult rats induced by fetal exposure to maternal low protein diets. Clin Sci. 1994; 86(2), 217222. DOI: 10.1042/cs0860217.CrossRefGoogle ScholarPubMed
Holemans, K, Gerber, R, Meurrens, K, de Clerck, F, Poston, L, van Assche, FA. Maternal food restriction in the second half of pregnancy affects vascular function but not blood pressure of rat female offspring. Br J Nutr. 1999; 81(1), 7379.CrossRefGoogle Scholar
Zambrano, E, Rodríguez-González, GL, Guzmán, C, et al. A maternal low protein diet during pregnancy and lactation in the rat impairs male reproductive development. J Physiol. 2005; 563(1), 275284. DOI: 10.1113/jphysiol.2004.078543.CrossRefGoogle ScholarPubMed
Toledo, FC, Perobelli, JE, Pedrosa, FP, Anselmo-Franci, JA, Kempinas, WD. In utero protein restriction causes growth delay and alters sperm parameters in adult male rats. Reprod Biol Endocrin. 2011; 9(1), 94. DOI: 10.1186/1477-7827-9-94.CrossRefGoogle ScholarPubMed
Glass, AR, Mellitt, R, Vigersky, RA, Swerdloff, RS. Hypoandrogenism and abnormal regulation of gonadotropin secretion in rats fed a low protein diet*. Endocrinology. 1979; 104(2), 438442. DOI: 10.1210/endo-104-2-438.CrossRefGoogle ScholarPubMed
Glass, AR, Anderson, J, Herbert, D, Vigersky, RA. Growth and reproductive adaptation in male rats with chronic protein deficiency. J Androl. 1984; 5(2), 99102. DOI: 10.1002/j.1939-4640.1984.tb00782.x.CrossRefGoogle ScholarPubMed
Robb, GW, Amann, RP, Killian, GJ. Daily sperm production and epididymal sperm reserves of pubertal and adult rats. Reproduction. 1978; 54(1), 103107. DOI: 10.1530/jrf.0.0540103.CrossRefGoogle ScholarPubMed
Siervo, GEML, Vieira, HR, Ogo, FM, et al. Spermatic and testicular damages in rats exposed to ethanol: influence of lipid peroxidation but not testosterone. Toxicology. 2015; 330, 18. DOI: 10.1016/j.tox.2015.01.016.CrossRefGoogle Scholar
Fernandes, GSA, Arena, AC, Fernandez, CDB, Mercadante, A, Barbisan, LF, Kempinas, WG. Reproductive effects in male rats exposed to diuron. Reproduct Toxicol. 2007; 23(1), 106112. DOI: 10.1016/j.reprotox.2006.09.002.CrossRefGoogle ScholarPubMed
Silva, EJ, Vendramini, V, Restelli, A, Bertolla, RP, Kempinas, WG, Avellar, MC. Impact of adrenalectomy and dexamethasone treatment on testicular morphology and sperm parameters in rats: insights into the adrenal control of male reproduction. Andrology-US. 2014; 2(6), 835846. DOI: 10.1111/j.2047-2927.2014.00228.x.CrossRefGoogle ScholarPubMed
Favareto, APA, de Toledo, FC, Kempinas, WDG. Paternal treatment with cisplatin impairs reproduction of adult male offspring in rats. Reproduct Toxicol. 2011; 32(4), 425433. DOI: 10.1016/j.reprotox.2011.10.003.CrossRefGoogle ScholarPubMed
Nassr, ACC, Arena, AC, Toledo, FC, et al. Effects of gestational and lactational fenvalerate exposure on immune and reproductive systems of male rats. J Toxicol Environ Health A. 2010; 73(13-14), 952964. DOI: 10.1080/15287391003751745.CrossRefGoogle ScholarPubMed
Leblond, CP, Clermont, Y. Spermiogenesis of rat, mouse, hamster and guinea pig as revealed by the ?periodic acid-fuchsin sulfurous acid? technique. Am J Anat. 1952; 90(2), 167215. DOI: 10.1002/aja.1000900202.CrossRefGoogle ScholarPubMed
Bradford, M. A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976; 72(1-2), 284–254.CrossRefGoogle Scholar
Erthal, RP, de Siervo G.E.M., L, Frigoli, GF, Zaninelli, TH, Verri, WA, Fernandes, GSA. Malathion exposure during juvenile and peripubertal periods downregulate androgen receptor and 17-ß-HSD testicular gene expression and compromised sperm quality in rats. J Dev Orig Health Dis. 2022; 7(2), 18. DOI: 10.1017/S2040174422000599.Google Scholar
Aviram, M, Eias, K. Dietary olive oil reduces low-density lipoprotein uptake by macrophages and decreases the susceptibility of the lipoprotein to undergo lipid peroxidation. Ann Nutr Metab. 1993; 37(2), 7584. DOI: 10.1159/000177753.CrossRefGoogle ScholarPubMed
Parfitt, VJ, Desomeaux, K, Bolton, CH, Hartog, M. Effects of high monounsaturated and polyunsaturated fat diets on plasma lipoproteins and lipid peroxidation in Type 2 Diabetes mellitus. Diabet Med. 1994; 11(1), 8591. DOI: 10.1111/j.1464-5491.1994.tb00235.x.CrossRefGoogle ScholarPubMed
Jiang, ZY, Woollard, ACS, Wolff, SP. Lipid hydroperoxide measurement by oxidation of Fe2+ in the presence of xylenol orange. Comparison with the TBA assay and an iodometric method. Lipids. 1991; 26(10), 853856. DOI: 10.1007/BF02536169.CrossRefGoogle Scholar
Rahman, I, Kode, A, Biswas, SK. Assay for quantitative determination of glutathione and glutathione disulfide levels using enzymatic recycling method. Nat Protoc. 2007; 1(6), 63165. DOI: 10.1038/nprot.2006.378.Google Scholar
Aebi, H. Catalase in vitro. Methods Enzymol. 1984; 105, 121126. DOI: 10.1016/S0076-6879(84)05016-3.CrossRefGoogle ScholarPubMed
Senthikulmar, M, Amaresan, N, Sankaranaranarayanan, A. Plant-Microbe Interactions, 2021. Springer, US, New York, NY.CrossRefGoogle Scholar
Keen, J, Habig, WH, Jakoby, WB. Mechanism for the several activities of the glutathione S-transferases. J Biol Chem. 1976; 251(20), 61536188.CrossRefGoogle ScholarPubMed
Martin, LJ. Cell interactions and genetic regulation that contribute to testicular Leydig cell development and differentiation. Mol Reprod Dev. 2016; 83(6), 470487. DOI: 10.1002/mrd.22648.CrossRefGoogle ScholarPubMed
Griswold, MD. The central role of Sertoli cells in spermatogenesis. Semin Cell Dev Biol. 1998; 9(4), 411416. DOI: 10.1006/scdb.1998.0203.CrossRefGoogle ScholarPubMed
Mruk, DD, Cheng, CY. Sertoli-Sertoli and Sertoli-germ cell interactions and their significance in germ cell movement in the seminiferous epithelium during spermatogenesis. Endocr Rev. 2004; 25(5), 747806. DOI: 10.1210/er.2003-0022.CrossRefGoogle ScholarPubMed
Rebourcet, D, O’Shaughnessy, PJ, Pitetti, JL, et al. Sertoli cells control peritubular myoid cell fate and support adult Leydig cell development in the prepubertal testis. Development. 2014; 141(10), 21392149. DOI: 10.1242/dev.107029.CrossRefGoogle ScholarPubMed
Serdloff, RS. What is the relationship among the various endocrine components of the male reproductive system?. In Handbook of Andrology, 2nd ed. (eds. Robaire, B, Chan, P), 2010; pp. 2.12.4. The American Society of Andrology.Google Scholar
Damián, JP, Bausero, M, Bielli, A. Acute stress, hypothalamic-hypophyseal-gonadal axis and testicular function – a review. Ann Animal Sci. 2015; 15(1), 3150. DOI: 10.2478/aoas-2014-0084.CrossRefGoogle Scholar
Polkowska, J, Lerrant, Y, Wańkowska, M, Wójcik-Gładysz, A, Starzec, A, Counis, R. The effect of dietary protein restriction on the secretion of LH and FSH in pre-pubertal female lambs. Anim Reprod Sci. 2003; 76(1-2), 5366. DOI: 10.1016/S0378-4320(02)00237-3.CrossRefGoogle ScholarPubMed
Glass, AR, Steinberger, A, Swerdloff, R, Vigersky, RA. Pituitary-testicular function in protein-deficient rats. Follicle-stimulating hormone hyperresponse to castration and supersensitivity of gonadotropin secretion to androgen negative feedback*. Endocrinology. 1982; 110(5), 15421546. DOI: 10.1210/endo-110-5-1542.CrossRefGoogle ScholarPubMed
Foley, GL. Overview of male reproductive pathology. Toxicol Pathol. 2001; 29(1), 4963.CrossRefGoogle ScholarPubMed
Walker, WH, Cheng, J. FSH and testosterone signaling in Sertoli cells. Reproduction. 2005; 130(1), 1528. DOI: 10.1530/rep.1.00358.CrossRefGoogle ScholarPubMed
Boekelheide, K. Mechanisms of toxic damage to spermatogenesis. J Natl Cancer Inst Monogr. 2005; 2005(34), 68. DOI: 10.1093/jncimonographs/lgi006.CrossRefGoogle Scholar
Sofikitis, N, Giotitsas, N, Tsounapi, P, Baltogiannis, D, Giannakis, D, Pardalidis, N. Hormonal regulation of spermatogenesis and spermiogenesis. J Steroid Biochem Mol Biol. 2008; 109(3-5), 323330. DOI: 10.1016/j.jsbmb.2008.03.004.CrossRefGoogle ScholarPubMed
França, LR, Hess, RA, Dufour, JM, Hofmann, MC, Griswold, MD. The sertoli cell: one hundred fifty years of beauty and plasticity. Andrology. 2016; 4(2), 189212. DOI: 10.1111/andr.12165.CrossRefGoogle ScholarPubMed
Chen, X, An, H, Ao, L, et al. The combined toxicity of dibutyl phthalate and benzo(a)pyrene on the reproductive system of male Sprague Dawley rats in vivo. J Hazard Mater. 2011; 186(1), 835841. DOI: 10.1016/j.jhazmat.2010.11.078.CrossRefGoogle ScholarPubMed
Sharpe, RM, Mckinnell, C, Kivlin, C, Fisher, JS. Proliferation and functional maturation of Sertoli cells, and their relevance to disorders of testis function in adulthood. Reproduction. 2003; 125(6), 769784.CrossRefGoogle ScholarPubMed
Hayrabedyan, S, Todorova, K, Pashova, S, Mollova, M, Fernández, N. Sertoli cell quiescence – new insights. Am J Reproduct Immunol. 2012; 68(6), 451455. DOI: 10.1111/J.1600-0897.2012.01137.X.CrossRefGoogle ScholarPubMed
Orth, JM. Proliferation of sertoli cells in fetal and postnatal rats: a quantitative autoradiographic study. Anat Rec. 1982; 203(4), 485492. DOI: 10.1002/AR.1092030408.CrossRefGoogle ScholarPubMed
Figueiredo, AFA, França, LR, Hess, RA, Costa, GMJ. Sertoli cells are capable of proliferation into adulthood in the transition region between the seminiferous tubules and the rete testis in Wistar rats. Cell Cycle. 2016; 15(18), 24862496. DOI: 10.1080/15384101.2016.1207835.CrossRefGoogle ScholarPubMed
Chaudhary, J, Sadler-Riggleman, I, Ague, JM, Skinner, MK. The helix-loop-helix inhibitor of differentiation (ID) proteins induce post-mitotic terminally differentiated Sertoli cells to re-enter the cell cycle and proliferate. Biol Reprod. 2005; 72(5), 12051217. DOI: 10.1095/BIOLREPROD.104.035717.CrossRefGoogle ScholarPubMed
Lejeune, H, Habert, R, Saez, JM. REVIEW origin, proliferation and differentiation of leydig cells. J Mol Endocrinol. 1998; 20(1), 125. DOI: 10.1677/jme.0.0200001.CrossRefGoogle ScholarPubMed
Guan, X, Chen, F, Chen, P, et al. Effects of spermatogenic cycle on stem Leydig cell proliferation and differentiation. Mol Cell Endocrinol. 2019; 481, 3543. DOI: 10.1016/J.MCE.2018.11.007.CrossRefGoogle ScholarPubMed
Chen, H, Wang, Y, Ge, R, Zirkin, BR. Leydig cell stem cells: identification, proliferation and differentiation. Mol Cell Endocrinol. 2017; 445, 6573. DOI: 10.1016/j.mce.2016.10.010.CrossRefGoogle ScholarPubMed
Elfgen, V, Mietens, A, Mewe, M, Hau, T, Middendorff, R. Contractility of the epididymal duct - function, regulation and potential drug effects. Reproduction. 2018; 156(1), R125R141. DOI: 10.1530/REP-17-0754.Google ScholarPubMed
Cornwall, GA. New insights into epididymal biology and function. Hum Reprod Update. 2008; 15(2), 213227. DOI: 10.1093/humupd/dmn055.CrossRefGoogle Scholar
Dacheux, JL, Dacheux, F. New insights into epididymal function in relation to sperm maturation. Reproduction. 2014; 147(2), R27R42. DOI: 10.1530/REP-13-0420.CrossRefGoogle ScholarPubMed
Fernandez, CDB, Porto, EM, Arena, AC, Kempinas, WDG. Effects of altered epididymal sperm transit time on sperm quality. Int J Androl. 2008; 31(4), 427437. DOI: 10.1111/j.1365-2605.2007.00788.x.CrossRefGoogle ScholarPubMed
de Souza, APB, Schorr-Lenz, ÂM, Lucca, F, Bustamante, IC. The epididymis and its role on sperm quality and male fertility. Anim Reprod. 2017; 14(Suppl. 1), 12341244. DOI: 10.21451/1984-3143-AR955.CrossRefGoogle Scholar
Devi, A, Kushwaha, B, Maikhuri, JP, Singh, R, Gupta, G. Cell signaling in sperm midpiece ensures quiescence and survival in cauda epididymis. Reproduction. 2021; 162(5), 339351. DOI: 10.1530/REP-21-0202.CrossRefGoogle ScholarPubMed
Ojeda, SR, Andrews, WW, Advis, JP, White, SS. Recent advances in the endocrinology of puberty. Endocr Rev. 1980; 1(3), 228257. DOI: 10.1210/EDRV-1-3-228.CrossRefGoogle ScholarPubMed
de Cássia da Silveira, SR, Leite, MN, de Moura Reporedo, M, Nóbrega de Almeida, R. Evaluation of long-term exposure to Mikania glomerata (Sprengel) extract on male Wistar rats’ reproductive organs, sperm production and testosterone level. Contraception. 2003; 67(4), 327331. DOI: 10.1016/S0010-7824(02)00523-1.CrossRefGoogle Scholar
Revathi, P, Vani, B, Sarathchandiran, I, Kadalmani, B, Prakash Shyam, K, Palnivel, K. Reproductive toxicity of Capparis aphylla (Roth.) in male albino rats. Int J Pharm Biomed Res. 2010; 1(3), 102112.Google Scholar