Hostname: page-component-f554764f5-44mx8 Total loading time: 0 Render date: 2025-04-23T03:38:05.652Z Has data issue: false hasContentIssue false

A theoretical derivation of slip boundary conditions based on the Cercignani–Lampis–Lord scattering model

Published online by Cambridge University Press:  13 November 2024

Peng Luan
Affiliation:
School of Aeronautic Science and Engineering, Beihang University, Beijing 100191, PR China
Hao Yang
Affiliation:
School of Aeronautic Science and Engineering, Beihang University, Beijing 100191, PR China
Qihan Ma
Affiliation:
School of Aeronautic Science and Engineering, Beihang University, Beijing 100191, PR China
Jun Zhang*
Affiliation:
School of Aeronautic Science and Engineering, Beihang University, Beijing 100191, PR China
*
Email address for correspondence: jun.zhang@buaa.edu.cn

Abstract

To characterize fluid flow in the slip regime, the use of Navier–Stokes–Fourier (NSF) equations with slip boundary conditions is prevalent. This trend underscores the necessity of developing reliable and accurate slip boundary conditions. According to kinetic theory, slip behaviours are intrinsically linked to the gas scattering processes at the surface. The widely used Maxwell scattering model, which employs a single accommodation coefficient to describe gas scattering processes, reveals its limitations when the difference between accommodation coefficients in the tangential and normal directions becomes significant. In this work, we provide a derivation of velocity slip and temperature jump boundary conditions based on the Cercignani–Lampis–Lord scattering model, which applies two independent accommodation coefficients to describe the gas scattering process. A Knudsen layer correction term is introduced to account for the impact of the surface on the velocity distribution function, which is associated with the scattering model. The governing equation of the correction term is established based on the linearized Boltzmann equation. Additionally, two moments are derived to capture the collision effect in the Knudsen layer: a conserving moment of collision invariants, and an approximate higher-order conserving moment. These moments are then employed to determine the coefficients in the correction term. We demonstrate that the derived slip coefficients align closely with numerical results obtained by solving the Boltzmann equation in the Knudsen layer. Besides, we apply the derived slip boundary conditions within the framework of the NSF equations, yielding numerical results that exhibit excellent consistency with those obtained through molecular-level simulations.

Type
JFM Papers
Copyright
© The Author(s), 2024. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Akhlaghi, H., Roohi, E. & Stefanov, S. 2023 A comprehensive review on micro- and nano-scale gas flow effects: slip-jump phenomena, Knudsen paradox, thermally-driven flows, and Knudsen pumps. Phys. Rep. 997, 160.CrossRefGoogle Scholar
Aoki, K., Baranger, C., Hattori, M., Kosuge, S., Martalò, G., Mathiaud, J. & Mieussens, L. 2017 Slip boundary conditions for the compressible Navier–Stokes equations. J. Stat. Phys. 169, 744781.CrossRefGoogle Scholar
Arkilic, E.B., Breuer, K.S. & Schmidt, M.A. 2001 Mass flow and tangential momentum accommodation in silicon micromachined channels. J. Fluid Mech. 437, 2943.CrossRefGoogle Scholar
Basdanis, T., Tatsios, G. & Valougeorgis, D. 2022 Gas–surface interaction in rarefied gas flows through long capillaries via the linearized Boltzmann equation with various boundary conditions. Vacuum 202, 111152.CrossRefGoogle Scholar
Basdanis, T., Valougeorgis, D. & Sharipov, F. 2023 Viscous and thermal velocity slip coefficients via the linearized Boltzmann equation with ab initio potential. Microfluid. Nanofluid. 27 (11), 120.CrossRefGoogle Scholar
Bird, G.A. 1994 Molecular Gas Dynamics and the Direct Simulation of Gas Flows. Oxford University Press.CrossRefGoogle Scholar
Candler, G.V. 2019 Rate effects in hypersonic flows. Annu. Rev. Fluid Mech. 51, 379402.CrossRefGoogle Scholar
Cao, B.-Y., Sun, J., Chen, M. & Guo, Z.-Y. 2009 Molecular momentum transport at fluid–solid interfaces in MEMS/NEMS: a review. Intl J. Mol. Sci. 10 (11), 46384706.CrossRefGoogle ScholarPubMed
Cercignani, C. & Cercignani, C. 1988 The Boltzmann Equation. Springer.CrossRefGoogle Scholar
Cercignani, C. & Lampis, M. 1971 Kinetic models for gas–surface interactions. Transp. Theor. Stat. Phys. 1 (2), 101114.CrossRefGoogle Scholar
Chapman, S. & Cowling, T.G. 1990 The Mathematical Theory of Non-Uniform Gases: An Account of the Kinetic Theory of Viscosity, Thermal Conduction and Diffusion in Gases. Cambridge University Press.Google Scholar
Chen, Y., Gibelli, L., Li, J. & Borg, M.K. 2023 Impact of surface physisorption on gas scattering dynamics. J. Fluid Mech. 968, A4.CrossRefGoogle Scholar
Fei, F., Zhang, J., Li, J. & Liu, Z.H. 2020 A unified stochastic particle Bhatnagar–Gross–Krook method for multiscale gas flows. J. Comput. Phys. 400, 108972.CrossRefGoogle Scholar
Feng, K., Tian, P., Zhang, J., Fei, F. & Wen, D. 2023 Spartacus: an open-source unified stochastic particle solver for the simulation of multiscale nonequilibrium gas flows. Comput. Phys. Commun. 284, 108607.CrossRefGoogle Scholar
Gökçen, T., MacCormack, R.W. & Chapman, D.R. 1987 Computational fluid dynamics near the continuum limit. AIAA Paper 1115-1987.CrossRefGoogle Scholar
Grad, H. 1949 On the kinetic theory of rarefied gases. Commun. Pure Appl. Maths 2 (4), 331407.CrossRefGoogle Scholar
Greenshields, C.J., Weller, H.G., Gasparini, L. & Reese, J.M. 2010 Implementation of semi-discrete, non-staggered central schemes in a colocated, polyhedral, finite volume framework, for high-speed viscous flows. Intl J. Numer. Meth. Fluids 63 (1), 121.CrossRefGoogle Scholar
Gu, X.-J. & Emerson, D.R. 2009 A high-order moment approach for capturing non-equilibrium phenomena in the transition regime. J. Fluid Mech. 636, 177216.CrossRefGoogle Scholar
Hadjiconstantinou, N.G. 2003 Comment on Cercignani's second-order slip coefficient. Phys. Fluids 15 (8), 23522354.CrossRefGoogle Scholar
Hadjiconstantinou, N.G. & Al-Mohssen, H.A. 2005 A linearized kinetic formulation including a second-order slip model for an impulsive start problem at arbitrary Knudsen numbers. J. Fluid Mech. 533, 4756.CrossRefGoogle Scholar
Ivanov, M.S. & Gimelshein, S.F. 1998 Computational hypersonic rarefied flows. Annu. Rev. Fluid Mech. 30 (1), 469505.CrossRefGoogle Scholar
Ivchenko, I.N., Loyalka, S.K. & Tompson, R.V. Jr. 2007 Analytical Methods for Problems of Molecular Transport. Springer.CrossRefGoogle Scholar
Jasak, H., Jemcov, A. & Tukovic, Z. 2007 OpenFOAM: a C++ library for complex physics simulations. In Proceedings of the International Workshop on Coupled Methods in Numerical Dynamics. Fakultet strojarstva i brodogradnje Sveučilišta u Zagrebu, pp. 47–66.Google Scholar
Kalempa, D. & Sharipov, F. 2020 Drag and thermophoresis on a sphere in a rarefied gas based on the Cercignani–Lampis model of gas–surface interaction. J. Fluid Mech. 900, A37.CrossRefGoogle Scholar
Karniadakis, G., Beskok, A. & Aluru, N. 2006 Microflows and Nanoflows: Fundamentals and Simulation, Interdisciplinary Applied Mathematics, vol. 29. Springer Science & Business Media.Google Scholar
Klinc, T. & Kuščer, I. 1972 Slip coefficients for general gas–surface interaction. Phys. Fluids 15 (6), 10181022.CrossRefGoogle Scholar
Le, N.T.P., White, C., Reese, J.M. & Myong, R.S. 2012 Langmuir–Maxwell and Langmuir–Smoluchowski boundary conditions for thermal gas flow simulations in hypersonic aerodynamics. Intl J. Heat Mass Transfer 55 (19–20), 50325043.CrossRefGoogle Scholar
Li, R. & Yang, Y. 2023 Slip and jump coefficients for general gas–surface interactions according to the moment method. Phys. Fluids 35 (3), 032010.Google Scholar
Liang, T., Li, Q. & Ye, W. 2013 Performance evaluation of Maxwell and Cercignani–Lampis gas–wall interaction models in the modeling of thermally driven rarefied gas transport. Phys. Rev. E 88 (1), 013009.CrossRefGoogle ScholarPubMed
Lockerby, D.A. & Reese, J.M. 2008 On the modelling of isothermal gas flows at the microscale. J. Fluid Mech. 604, 235261.CrossRefGoogle Scholar
Lockerby, D.A., Reese, J.M., Emerson, D.R. & Barber, R.W. 2004 Velocity boundary condition at solid walls in rarefied gas calculations. Phys. Rev. E 70 (1), 017303.CrossRefGoogle ScholarPubMed
Lofthouse, A.J., Scalabrin, L.C. & Boyd, I.D. 2008 Velocity slip and temperature jump in hypersonic aerothermodynamics. J. Thermophys. Heat Transfer 22 (1), 3849.CrossRefGoogle Scholar
Lord, R.G. 1991 Some extensions to the Cercignani–Lampis gas–surface scattering kernel. Phys. Fluids A 3 (4), 706710.CrossRefGoogle Scholar
Lord, R.G. 1992 Direct simulation Monte Carlo calculations of rarefied flows with incomplete surface accommodation. J. Fluid Mech. 239, 449459.CrossRefGoogle Scholar
Lord, R.G. 1995 Some further extensions of the Cercignani–Lampis gas–surface interaction model. Phys. Fluids 7 (5), 11591161.CrossRefGoogle Scholar
Loyalka, S.K. 1968 Momentum and temperature-slip coefficients with arbitrary accommodation at the surface. J. Chem. Phys. 48 (12), 54325436.CrossRefGoogle Scholar
Loyalka, S.K. 1971 a Slip in the thermal creep flow. Phys. Fluids 14 (1), 2124.CrossRefGoogle Scholar
Loyalka, S.K. 1971 b Approximate method in the kinetic theory. Phys. Fluids 14 (11), 22912294.CrossRefGoogle Scholar
Loyalka, S.K. 1989 Temperature jump and thermal creep slip: rigid sphere gas. Phys. Fluids A 1 (2), 403408.CrossRefGoogle Scholar
Ma, W., Zhang, J., Feng, K., Xing, H. & Wen, D. 2024 Dimensional homogeneity constrained gene expression programming for discovering governing equations. J. Fluid Mech. 985, A12.CrossRefGoogle Scholar
Maxwell, J.C. 1879 VII. On stresses in rarified gases arising from inequalities of temperature. Phil. Trans. R. Soc. Lond. 170, 231256.Google Scholar
McCormick, N.J. 2005 Gas–surface accommodation coefficients from viscous slip and temperature jump coefficients. Phys. Fluids 17 (10), 107104.CrossRefGoogle Scholar
Myong, R.S. 2004 Gaseous slip models based on the Langmuir adsorption isotherm. Phys. Fluids 16 (1), 104117.CrossRefGoogle Scholar
Myong, R.S., Reese, J.M., Barber, R.W. & Emerson, D.R. 2005 Velocity slip in microscale cylindrical Couette flow: the Langmuir model. Phys. Fluids 17 (8), 087105.CrossRefGoogle Scholar
Ohwada, T., Sone, Y. & Aoki, K. 1989 Numerical analysis of the shear and thermal creep flows of a rarefied gas over a plane wall on the basis of the linearized Boltzmann equation for hard-sphere molecules. Phys. Fluids A 1 (9), 15881599.CrossRefGoogle Scholar
Patterson, G.N. 1956 Molecular Flow of Gases. Wiley.CrossRefGoogle Scholar
Plimpton, S.J., Moore, S.G., Borner, A., Stagg, A.K., Koehler, T.P., Torczynski, J.R. & Gallis, M.A. 2019 Direct simulation Monte Carlo on petaflop supercomputers and beyond. Phys. Fluids 31 (8), 086101.CrossRefGoogle Scholar
Qian, J.H., Wu, H.A. & Wang, F.C. 2023 A generalized Knudsen theory for gas transport with specular and diffuse reflections. Nat. Commun. 14 (1), 7386.CrossRefGoogle ScholarPubMed
Radtke, G.A., Hadjiconstantinou, N.G., Takata, S. & Aoki, K. 2012 On the second-order temperature jump coefficient of a dilute gas. J. Fluid Mech. 707, 331341.CrossRefGoogle Scholar
Reese, J.M., Gallis, M.A. & Lockerby, D.A. 2003 New directions in fluid dynamics: non-equilibrium aerodynamic and microsystem flows. Phil. Trans. R. Soc. Lond. A 361 (1813), 29672988.CrossRefGoogle ScholarPubMed
Shan, B., Wang, P., Wang, R., Zhang, Y. & Guo, Z. 2022 Molecular kinetic modelling of nanoscale slip flow using a continuum approach. J. Fluid Mech. 939, A9.CrossRefGoogle Scholar
Sharipov, F. 2003 a Application of the Cercignani–Lampis scattering kernel to calculations of rarefied gas flows. II. Slip and jump coefficients. Eur. J. Mech. B/Fluids 22 (2), 133143.CrossRefGoogle Scholar
Sharipov, F. 2003 b Application of the Cercignani–Lampis scattering kernel to calculations of rarefied gas flows. III. Poiseuille flow and thermal creep through a long tube. Eur. J. Mech. (B/Fluids) 22 (2), 145154.CrossRefGoogle Scholar
Sharipov, F. 2011 Data on the velocity slip and temperature jump on a gas–solid interface. J. Phys. Chem. Ref. Data 40 (2), 023101.CrossRefGoogle Scholar
Sharipov, F. 2015 Rarefied Gas Dynamics: Fundamentals for Research and Practice. John Wiley & Sons.Google Scholar
Sharipov, F. 2022 Direct simulation Monte Carlo method based on ab initio potential: recovery of transport coefficients of multi-component mixtures of noble gases. Phys. Fluids 34 (9), 097114.CrossRefGoogle Scholar
Sharipov, F. & Moldover, M.R. 2016 Energy accommodation coefficient extracted from acoustic resonator experiments. J. Vac. Sci. Technol. A 34 (6), 061604.CrossRefGoogle ScholarPubMed
Sharipov, F. & Strapasson, J.L. 2013 Benchmark problems for mixtures of rarefied gases. I. Couette flow. Phys. Fluids 25 (2), 027101.CrossRefGoogle Scholar
Sharipov, F. & Volkov, A.N. 2022 Aerothermodynamics of a sphere in a monatomic gas based on ab initio interatomic potentials over a wide range of gas rarefaction: transonic, supersonic and hypersonic flows. J. Fluid Mech. 942, A17.CrossRefGoogle Scholar
Shen, C. 2006 Rarefied Gas Dynamics: Fundamentals, Simulations and Micro Flows. Springer Science & Business Media.Google Scholar
Siewert, C.E. 2003 Viscous-slip, thermal-slip, and temperature-jump coefficients as defined by the linearized Boltzmann equation and the Cercignani–Lampis boundary condition. Phys. Fluids 15 (6), 16961701.CrossRefGoogle Scholar
Sipkens, T.A. & Daun, K.J. 2018 Effect of surface interatomic potential on thermal accommodation coefficients derived from molecular dynamics. J. Phys. Chem. C 122 (35), 2043120443.CrossRefGoogle Scholar
Smoluchowski von Smolan, M. 1898 Ueber wärmeleitung in verdünnten gasen. Ann. Phys. 300 (1), 101130.CrossRefGoogle Scholar
Sone, Y., Bardos, C., Golse, F. & Sugimoto, H. 2000 Asymptotic theory of the Boltzmann system, for a steady flow of a slightly rarefied gas with a finite Mach number: general theory. Eur. J. Mech. B/Fluids 19 (3), 325360.CrossRefGoogle Scholar
Sone, Y., Ohwada, T. & Aoki, K. 1989 Temperature jump and Knudsen layer in a rarefied gas over a plane wall: numerical analysis of the linearized Boltzmann equation for hard-sphere molecules. Phys. Fluids A 1 (2), 363370.CrossRefGoogle Scholar
Spijker, P., Markvoort, A.J., Nedea, S.V. & Hilbers, P.A.J. 2010 Computation of accommodation coefficients and the use of velocity correlation profiles in molecular dynamics simulations. Phys. Rev. E 81 (1), 011203.CrossRefGoogle ScholarPubMed
Struchtrup, H. 2005 Macroscopic Transport Equations for Rarefied Gas Flows. Springer.CrossRefGoogle Scholar
Struchtrup, H. 2013 Maxwell boundary condition and velocity dependent accommodation coefficient. Phys. Fluids 25 (11), 112001.CrossRefGoogle Scholar
Struchtrup, H. & Weiss, W. 2000 Temperature jump and velocity slip in the moment method. Continuum Mech. Thermodyn. 12, 118.CrossRefGoogle Scholar
To, Q.-D., Vu, V.-H., Lauriat, G. & Léonard, C. 2015 Boundary conditions for gas flow problems from anisotropic scattering kernels. J. Math. Phys. 56 (10), 103101.CrossRefGoogle Scholar
Torrilhon, M. & Struchtrup, H. 2008 Boundary conditions for regularized 13-moment-equations for micro-channel-flows. J. Comput. Phys. 227 (3), 19822011.CrossRefGoogle Scholar
Wang, C., Ou, J. & Chen, J. 2023 Numerical study of hypersonic near-continuum flow by improved slip boundary condition. AIAA J. 62 (1), 18–30.Google Scholar
Wang, Z., Song, C., Qin, F. & Luo, X. 2021 Establishing a data-based scattering kernel model for gas–solid interaction by molecular dynamics simulation. J. Fluid Mech. 928, A34.CrossRefGoogle Scholar
Wu, L. & Struchtrup, H. 2017 Assessment and development of the gas kinetic boundary condition for the Boltzmann equation. J. Fluid Mech. 823, 511537.CrossRefGoogle Scholar
Yamamoto, K., Takeuchi, H. & Hyakutake, T. 2006 Characteristics of reflected gas molecules at a solid surface. Phys. Fluids 18 (4), 046103.CrossRefGoogle Scholar
Zeng, S., Zhao, W., Jiang, Z. & Chen, W. 2023 A second-order slip/jump boundary condition modified by nonlinear Rayleigh–Onsager dissipation factor. Phys. Fluids 35 (4), 042001.Google Scholar
Zhang, J., Luan, P., Deng, J., Tian, P. & Liang, T. 2021 Theoretical derivation of slip boundary conditions for single-species gas and binary gas mixture. Phys. Rev. E 104 (5), 055103.CrossRefGoogle ScholarPubMed
Zhang, J. & Ma, W. 2020 Data-driven discovery of governing equations for fluid dynamics based on molecular simulation. J. Fluid Mech. 892, A5.CrossRefGoogle Scholar
Zhang, W.-M., Meng, G. & Wei, X. 2012 A review on slip models for gas microflows. Microfluid Nanofluid 13, 845882.CrossRefGoogle Scholar