Hostname: page-component-669899f699-7xsfk Total loading time: 0 Render date: 2025-04-25T04:15:54.175Z Has data issue: false hasContentIssue false

Establishment of trophoblast cell line derived from buffalo (Bubalus bubalis) parthenogenetic embryo

Published online by Cambridge University Press:  14 October 2024

Sushil K. Mohapatra*
Affiliation:
Department of Animal Biotechnology, College of Veterinary Science and AH, Kamdhenu University, Sardarkrushinagar, Gujarat, India
Anjit Sandhu
Affiliation:
Animal Biotechnology Centre, National Dairy Research Institute, Karnal, Haryana, India
Prabhat Palta
Affiliation:
Animal Biotechnology Centre, National Dairy Research Institute, Karnal, Haryana, India
Manoj K. Singh
Affiliation:
Animal Biotechnology Centre, National Dairy Research Institute, Karnal, Haryana, India
Suresh K. Singla
Affiliation:
Animal Biotechnology Centre, National Dairy Research Institute, Karnal, Haryana, India
Manmohan S. Chauhan
Affiliation:
Animal Biotechnology Centre, National Dairy Research Institute, Karnal, Haryana, India
*
Corresponding author: Sushil K. Mohapatra; Email: drsushilmohapatra@gmail.com

Summary

We have established trophoblast cell lines, from parthenogenesis-derived buffalo blastocysts. The buffalo trophoblast cells were cultured continuously over 200 days and 21 passages. These cells were observed by phase-contrast microscopy for their morphology and characterized by reverse transcriptase polymerase chain reaction and immunofluorescence against trophoblast-specific markers and cytoskeletal proteins. Trophoblast cells showed positive staining for CDX2, a marker of these cells at both blastocyst and cell line levels. Epithelial morphology of these cells was revealed by positive staining against cytokeratins and tubulin but not against vimentin and dolichos biflorus agglutinin. Gene expression profiles of many important placenta-specific genes were studied in the primary trophectoderm outgrowths, which were collected on days 0, 5, 9, 12 and 15 of culture and trophoblast cell line at passages 12–15. Therefore, the trophoblast cell line derived can potentially be used for in vitro studies on buffalo embryonic development.

Type
Research Article
Copyright
© The Author(s), 2024. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Berg, D. K., Smith, C. S., Pearton, D. J., Wells, D. N., Broadhurst, R., Donnison, M. and Pfeffer, P. L. (2011). Trophectoderm lineage determination in cattle. Developmental Cell, 20, 244255. https://doi.org/10.1016/j.devcel.2011.01.003 CrossRefGoogle ScholarPubMed
Carlson, B. (1996). Patten’s Foundations of Embryology, sixth edition. New York: McGraw-Hill 151 p.Google Scholar
Deb, K., Sivaguru, M., Yong, H. Y. and Roberts, R. M. (2006). Cdx2 gene expression and trophectoderm lineage specification in mouse embryos. Science, 311(5763), 992–926. doi: 10.1126/science.1120925 CrossRefGoogle ScholarPubMed
Flechon, J., Laurie, S. and Notarianni, E. (1995). Isolation and characterization of a feeder-dependent, porcine trophectoderm cell line obtained from a 9-day blastocyst. Placenta, 16, 643658. doi: 10.1016/0143-4004(95)90033-0 CrossRefGoogle ScholarPubMed
Home, P., Ray, S., Dutta, D., Bronshteyn, I., Larson, M. and Paul, S. (2009). GATA3 is selectively expressed in the trophectoderm of peri-implantation embryo and directly regulates Cdx2 gene expression. Journal of Biological Chemistry, 284, 28729–8737. doi: 10.1074/jbc.M109.016840 CrossRefGoogle ScholarPubMed
Kuijk, E. W., Du Puy, L., Van Tol, H. T., Oei, C. H., Haagsman, H. P., Colenbrander, B. and Roelen, B. A. (2008). Differences in early lineage segregation between mammals. Developmental Dynamics, 237(4), 918927. doi: 10.1002/dvdy.21480 CrossRefGoogle ScholarPubMed
Kumar, S., Chaves, M. S., Ferreira, A. C. A., da Silva, A. F. B., Pereira, L. M. C., Vale, W. G., Filho, S. T. R., Watanabe, Y. F., Melo, L. M. and Freitas, V. J. F. (2024). Oocyte competence and gene expression in parthenogenetic produced embryos from repeat breeder and normally fertile buffaloes (Bubalus bubalis) raised in sub-humid tropical climate. Animal Reproduction Science, 262, 107426.CrossRefGoogle Scholar
Miyazaki, H., Imai, M., Hirayama, T., Saburi, S., Tanaka, M., Maruyama, M., Matsuo, C., Meguro, H., Nishibashi, K., Inoue, F., Djiane, F., Gertler, J., Tachi, S., Imakawa, K. and Tachi, C. (2002). Establishment of feeder-independent cloned caprine trophoblast cell line which expresses placental lactogen and interferon tau. Placenta, 23, 613630. doi: 10.1053/plac.2002.0846.CrossRefGoogle ScholarPubMed
Mohapatra, S. K., Sandhu, A., Singh, K. P., Singla, S. K., Chauhan, M. S., Manik, R. S. and Palta, P. (2015). Establishment of trophectoderm cell lines from buffalo (Bubalus bubalis) embryos of different sources and examination of In Vitro developmental competence, quality, epigenetic status and gene expression in cloned embryos derived from them. PLoS One, 10(6), e0129235. https://doi.org/10.1371/journal.pone.0129235 CrossRefGoogle Scholar
Nakano, H., Shimada, A., Imai, K., Takahashi, T. and Hashizume, K. (2002). Association of Dolichos biflorus lectin binding with full differentiation of bovine trophoblast cells. Reproduction, 124(4), 581592. https://doi.org/10.1530/rep.0.1240581 CrossRefGoogle ScholarPubMed
Ortega, M. S., Rizo, J. A., Drum, J. N., O’ Neil, E. V., Pohler, K. G., Kerns, K., Schmelze, A., Green, J. and Spencer, T. E. (2022). Development of an improved in vitro model of bovine trophectoderm differentiation. Frontiers in Animal Science, 3, 898808. https://doi.org/10.3389/fanim.2022.898808 CrossRefGoogle Scholar
Saadeldin, I. M., Kim, B. H., Lee, B. C. and Jang, G. (2011). Effect of different culture media on the temporal gene expression in the bovine developing embryos. Theriogenology, 75(6), 9951004. https://doi.org/10.1016/j.theriogenology.2010.11.006 CrossRefGoogle ScholarPubMed
Sandhu, A., Mohapatra, S., Singh, M., Singla, S., Chauhan, M. and Manik, R. (2023). Effects of epigenetic modifier on the developmental competence and quantitative expression of genes in male and female buffalo (Bubalus bubalis) cloned embryos. Zygote, 31(2), 129139. https://doi.org/10.1017/S0967199422000600 CrossRefGoogle ScholarPubMed
Sharma, R., George, A., Kamble, N. M., Singh, K. P., Chauhan, M. S., Singla, S. K., Manik, R. and Palta, P. (2011). Optimization of culture conditions to support long-term self-renewal of buffalo (Bubalus bubalis) embryonic stem cell-like cell. Cell Reprogram 13(6), 539549. https://doi.org/10.1089/cell.2011.0041 CrossRefGoogle Scholar
Shimada, A., Nakano, H., Takahashi, T., Imai, K. and Hashizume, K. (2001). Isolation and characterization of a bovine blastocyst-derived trophoblastic cell line, BT-1: Development of a culture system in the absence of feeder cell. Placenta, 22, 652662. doi: 10.1053/plac.2001.0702 CrossRefGoogle ScholarPubMed
Simmons, D. G. and Cross, J. C. (2005). Determinants of trophoblast lineage and cell subtype specification in the mouse placenta. Development Biology, 284, 1224. doi: 10.1016/j.ydbio.2005.05.010 CrossRefGoogle ScholarPubMed
Singh, K. P., Mohapatra, S. K., Kaushik, R., Singh, M. K., Palta, P., Singla, S. K., Manik, R. S. and Chauhan, M. S. (2021). Parthenogenetic activation of buffalo (Bubalus bubalis) oocytes: comparison of different activation reagents and different media on their developmental competence and quantitative expression of developmentally regulated genes. Zygote, 29(1), 4958. https://doi.org/10.1017/s0967199420000519 CrossRefGoogle ScholarPubMed
Talbot, N. C., Caperna, T. J., Edwards, J. L., Garrett, W., Wells, K.D. and Ealy, A. D. (2000). Bovine blastocyst-derived trophectoderm and endoderm cell cultures: Interferon tau and transferrin expression as respective in vitro markers. Biology of Reproduction, 62, 235247. doi: 10.1095/biolreprod62.2.235.CrossRefGoogle ScholarPubMed
Talbot, N. C., Caperna, T. J., Powell, A. M., Garrett, W. M. and Ealy, A. D. (2004). Isolation and characterization of a bovine trophectoderm cell line derived from a parthenogenetic blastocyst. Molecular Reproduction and Development, 69, 164173. doi: 10.1002/mrd.20165 CrossRefGoogle ScholarPubMed
Supplementary material: File

Mohapatra et al. supplementary material 1

Mohapatra et al. supplementary material
Download Mohapatra et al. supplementary material 1(File)
File 14.1 KB
Supplementary material: File

Mohapatra et al. supplementary material 2

Mohapatra et al. supplementary material
Download Mohapatra et al. supplementary material 2(File)
File 24.6 KB