Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-27T18:28:16.144Z Has data issue: false hasContentIssue false

Liquid clustering and capillary pressure in granular media

Published online by Cambridge University Press:  03 December 2014

Jean-Yves Delenne*
Affiliation:
Ingénierie des Agropolymères et Technologies Emergentes IATE, UMR 1208 INRA – CIRAD – Montpellier Supagro – Université Montpellier 2, 2 place Pierre Viala, 34060 CEDEX, Montpellier, France
Vincent Richefeu
Affiliation:
Laboratoire Sols, Solides, Structures, Risques 3SR, UMR 5521 CNRS – UJF Grenoble 1 – Grenoble INP, 38041 CEDEX 9, Grenoble, France
Farhang Radjai
Affiliation:
Laboratoire de Mécanique et Génie Civil LMGC, UMR 5508 Université Montpellier 2 – CNRS, 34095 Montpellier, France MultiScale Material Science for Energy and Environment, UMI 3466 CNRS-MIT, DCEE, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, CA 02139, USA
*
Email address for correspondence: delenne@supagro.inra.fr

Abstract

By means of extensive lattice Boltzmann simulations, we investigate the process of growth and coalescence of liquid clusters in a granular material as the amount of liquid increases. A homogeneous grain–liquid mixture is obtained by means of capillary condensation, thus providing meaningful statistics on the liquid distribution inside the granular material. The tensile stress carried by the grains as a function of the amount of condensed liquid reveals four distinct states, with a peak stress occurring at the transition from a primary coalescence process, where the cohesive strength is carried mostly by the grains, to a secondary process governed by the increase of the liquid cluster volumes. We show that the evolution of capillary states is correctly captured by a simple model accounting for the competing effects of the Laplace pressure and grain–liquid interface.

Type
Rapids
Copyright
© 2014 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bocquet, L., Charlaix, E., Ciliberto, S. & Crassous, J. 1998 Moisture-induced ageing in granular media and the kinetics of capillary condensation. Nature 396, 735737.Google Scholar
Forrest, S., Bridgwater, J., Mort, P. R., Litster, J. & Parker, D. J. 2002 Flow patterns in granulating systems. Powder Technol. 30, 9196.Google Scholar
Fournier, Z., Gerimichalos, D., Herminghaus, S., Kohonen, M. M., Mugele, F., Scheel, M., Schulz, M., Schulz, B., Schier, C., Seemann, R. & Shudelny, A. 2005 Mechanical properties of wet granular materials. J. Phys.: Condens. Matter 17, S477S502.Google Scholar
Fraysse, N., Thomé, H. & Petit, L. 1999 Humidity effect on the stability of sandpile. Eur. Phys. J. B 11, 615619.Google Scholar
Ghestem, M., Sidle, R. C. & Stokes, A. 2011 The influence of plant root systems on subsurface flow: implications for slope stability. Bioscience 61 (11), 869879.CrossRefGoogle Scholar
Gilabert, F. A., Roux, J.-N. & Castellanos, A. 2008 Computer simulation of model cohesive powders: plastic consolidation, structural changes and elasticity under isotropic loads. Phys. Rev. E 78, 031305.Google Scholar
He, X. & Doolen, G. D. 2002 Thermodynamic foundations of kinetic theory and lattice Boltzmann models for multiphase flows. J. Stat. Phys. 107, 309328.Google Scholar
Israelachvili, J. N. 1993 Intermolecular and Surface Forces. Academic.Google Scholar
Iverson, R. M., Reid, M. E., Iverson, N. R., LaHusen, R. G., Logan, M., Mann, J. E. & Brien, D. L. 2000 Acute sensitivity of landslide rates to initial soil porosity. Science 290 (5491), 513516.Google Scholar
Kupershtokh, A. L., Medvedev, D. A. & Karpov, D. I. 2009 On equations of state in a lattice Boltzmann method. Comput. Maths Applics. 58 (5), 965974.Google Scholar
Litster, J. & Ennis, B. 2004 The Science and Engineering of Granulation Process. Kluwer Academic.CrossRefGoogle Scholar
Lu, N., Godt, J. W. & Wu, D. T. 2010 A closed form equation for effective stress in unsaturated soil. Water Resour. Res. 46, W05515.Google Scholar
Mitarai, N. & Nori, F. 2006 Wet granular materials. Adv. Phys. 55 (1–2), 145.Google Scholar
Mitchell, J. K. & Soga, K. 2005 Fundamentals of Soil Behavior. Wiley.Google Scholar
Nicos, M. & Hudong, Chen 1996 Simulation of multicomponent fluids in complex three-dimensional geometries by the lattice Boltzmann method. Phys. Rev. E 53 (1), 743750.Google Scholar
Pailha, M., Nicolas, M. & Pouliquen, O. 2008 Initiation of underwater granular avalanches: influence of the initial volume fraction. Phys. Fluids 20, 111701.Google Scholar
Pakpour, M., Habibi, M, Møller, P. & Bonn, D. 2012 How to construct the perfect sandcastle. Sci. Rep. 2, 549.Google Scholar
Radjai, F. & Dubois, F. 2011 Discrete-Element Modeling of Granular Materials. Wiley.Google Scholar
Radjaï, F. & Richefeu, V. 2009 Bond anisotropy and cohesion of wet granular materials. Phil. Trans. R. Soc. A 367, 51235138.Google Scholar
Richefeu, V., El Youssoufi, M. S. & Radjai, F. 2006 Shear strength properties of wet granular materials. Phys. Rev. E 73 (5), 051304.Google Scholar
Richefeu, V., El Youssoufi, S., Azéma, E. & Radjai, F. 2009 Force distribution in cohesive and non cohesive granular media. Powder Technol. 190, 258263.Google Scholar
Ruiz, T., Rondet, E., Delalonde, M. & Desfours, J. P. 2011 Hydro-textural and consistency surface states of humid granular media. Powder Technol. 208 (2), 409416.Google Scholar
Scheel, M., Seemann, R., Brinkmann, M., Di Michiel, M., Sheppard, A., Breidenbach, B. & Herminghaus, S. 2008 Morphological clues to wet granular pile stability. Nat. Mater. 7 (3), 189193.Google Scholar
Shan, X. & Chen, H. 1993 Lattice Boltzmann model for simulating flows with multiple phases and components. Phys. Rev. E 47, 18151819.Google Scholar
Succi, S. 2001 The Lattice Boltzmann Equation for Fluid Dynamics and Beyond. Clarendon.CrossRefGoogle Scholar
Sukop, M. C. & Or, D. 2004 Lattice Boltzmann method for modeling liquid–vapor interface configurations in porous media. Water Resour. Res. 40, W01509.Google Scholar
Swift, M. R., Orlandini, E., Osborn, W. R. & Yeomans, J. M. 1996 Lattice Boltzmann simulations of liquid–gas and binary fluid systems. Phys. Rev. E 54 (5), 50415052.CrossRefGoogle ScholarPubMed
Topin, V., Monerie, Y., Perales, F. & Radjai, F. 2012 Collapse dynamics and runout of dense granular materials in a fluid. Phys. Rev. Lett. 109, 188001.Google Scholar
Voivret, C., Radjaï, F., Delenne, J.-Y. & El Youssoufi, M. S. 2007 Space-filling properties of polydisperse granular media. Phys. Rev. E 76, 021301.CrossRefGoogle ScholarPubMed
Willett, C., Adans, M., Johnson, S. & Seville, J. 2000 Capillary bridges between two spherical bodies. Langmuir 16, 93969405.Google Scholar
Yuan, P. & Schaefer, L. 2006 Equations of state in a lattice Boltzmann model. Phys. Fluids 18, 042101.Google Scholar