Let
$\to $
be a continuous
$\protect \operatorname {\mathrm {[0,1]}}$
-valued function defined on the unit square
$\protect \operatorname {\mathrm {[0,1]}}^2$
, having the following properties: (i)
$x\to (y\to z)= y\to (x\to z)$
and (ii)
$x\to y=1 $
iff
$x\leq y$
. Let
$\neg x=x\to 0$
. Then the algebra
$W=(\protect \operatorname {\mathrm {[0,1]}},1,\neg ,\to )$
satisfies the time-honored Łukasiewicz axioms of his infinite-valued calculus. Let
$x\to _{\text {\tiny \L }}y=\min (1,1-x+y)$
and
$\neg _{\text {\tiny \L }}x=x\to _{\text {\tiny \L }} 0 =1-x.$
Then there is precisely one isomorphism
$\phi $
of W onto the standard Wajsberg algebra
$W_{\text {\tiny \L }}= (\protect \operatorname {\mathrm {[0,1]}},1,\neg _{\text {\tiny \L }},\to _{\text {\tiny \L }})$
. Thus
$x\to y= \phi ^{-1}(\min (1,1-\phi (x)+\phi (y)))$
.