The measurement and communication of the effect size of an independent variable on a dependent variable is critical to effective statistical analysis in the Social Sciences. We develop ideas about how to extend traditional methods of evaluating relationships in multivariate models to explain and illustrate the statistical power of a focal independent variable. Even with a growing acceptance of the need to report effect sizes, scholars in the management community have few well-established protocols or guidelines for reporting effect sizes. In this editorial essay, we: (1) review the necessity of reporting effect sizes; (2) discuss commonly used measures of effect size and accepted cut-offs for large, medium, and small effect sizes; (3) recommend standards for reporting effect sizes via verbal descriptions and graphical presentations; and (4) present best practice examples of reporting and discussing effect size. In summary, we provide guidance for authors on how to report and interpret effect sizes, advocating for rigor and completeness in statistical analysis.