We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Using properties of Ramanujan’s theta functions, we give an elementary proof of Hirschhorn’s conjecture on $2^n$-dissection of Euler’s product $E(q):=(q;q)_\infty $.
In recent years, mock theta functions in the modern sense have received great attention to seek examples of q-hypergeometric series and find their alternative representations. In this paper, we discover some new mock theta functions and express them in terms of Hecke-type double sums based on some basic hypergeometric series identities given by Z.G. Liu.
In this note, we evaluate sums of partial theta functions. Our main tool is an application of an extended version of the Bailey transform to an identity of Gasper and Rahman on $q$-hypergeometric series.
We introduce a notion of $q$-deformed rational numbers and $q$-deformed continued fractions. A $q$-deformed rational is encoded by a triangulation of a polygon and can be computed recursively. The recursive formula is analogous to the $q$-deformed Pascal identity for the Gaussian binomial coefficients, but the Pascal triangle is replaced by the Farey graph. The coefficients of the polynomials defining the $q$-rational count quiver subrepresentations of the maximal indecomposable representation of the graph dual to the triangulation. Several other properties, such as total positivity properties, $q$-deformation of the Farey graph, matrix presentations and $q$-continuants are given, as well as a relation to the Jones polynomial of rational knots.
for $n\ges 0$. In this paper, we obtain the relation between the Jacobi continued fraction of the ordinary generating function of yn(q) and that of xn(q). We also prove that the transformation preserves q-TPr+1 (q-TP) property of the Hankel matrix $[x_{i+j}(q)]_{i,j \ges 0}$, in particular for r = 2,3, implying the r-q-log-convexity of the sequence $\{y_n(q)\}_{n\ges 0}$. As applications, we can give the continued fraction expressions of Eulerian polynomials of types A and B, derangement polynomials types A and B, general Eulerian polynomials, Dowling polynomials and Tanny-geometric polynomials. In addition, we also prove the strong q-log-convexity of derangement polynomials type B, Dowling polynomials and Tanny-geometric polynomials and 3-q-log-convexity of general Eulerian polynomials, Dowling polynomials and Tanny-geometric polynomials. We also present a new proof of the result of Pólya and Szegö about the binomial convolution preserving the Stieltjes moment property and a new proof of the result of Zhu and Sun on the binomial transformation preserving strong q-log-convexity.
We prove some congruences on sums involving fourth powers of central q-binomial coefficients. As a conclusion, we confirm the following supercongruence observed by Long [Pacific J. Math. 249 (2011), 405–418]:
where p⩾5 is a prime and r is a positive integer. Our method is similar to but a little different from the WZ method used by Zudilin to prove Ramanujan-type supercongruences.
We make a systematic study of a new combinatorial construction called a dual equivalence graph. We axiomatize these graphs and prove that their generating functions are symmetric and Schur positive. This provides a universal method for establishing the symmetry and Schur positivity of quasisymmetric functions.
The authors present a technique of deriving basic hypergeometric identities from specializations using fewer parameters, by using the classical Cauchy identity on the expansion of the power of $x$ in terms of the $q$-binomial coefficients. This method is referred to as ‘Cauchy augmentation’. Despite its simple appearance, the Cauchy identity plays a key role in parameter augmentation. For example, one can reach the $q$-Gauss summation formula from the Euler identity by using the Cauchy augmentation twice. This idea also applies to Jackson's $_2\phi_1$ to $_3\phi_1$ transformation formula. Moreover, a transformation formula analogous to Jackson's formula is obtained.
It is shown how many of the partial theta function identities in Ramanujan's lost notebook can be generalized to infinite families of such identities. Key in our construction is the Bailey lemma and a new generalization of the Jacobi triple product identity. By computing residues around the poles of our identities we find a surprising connection between partial theta function identities and Garrett–Ismail–Stanton-type extensions of multisum Rogers–Ramanujan identities.
Let be a (not necessarily simply laced) finite-dimensional complex simple Lie algebra with the Cartan subalgebra and Q ⊂ * the root lattice. Denote by ΘQ(q) the theta series of the root lattice Q of . We prove a curious “combinatorial” identity for the derivative of ΘQ(q), i.e. for by using the representation theory of an affine Lie algebra.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.