We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We show that if A is a stable basis algebra satisfying the distributivity condition, then B is a reduct of an independence algebra A having the same rank. If this rank is finite, then the endomorphism monoid of B is a left order in the endomorphism monoid of A.
This paper establishes a duality between the category of polytopes (finitely generated real convex sets considered as barycentric algebras) and a certain category of intersections of hypercubes, considered as barycentric algebras with additional constant operations.
If $A$ is a stable basis algebra of rank $n$, then the set $S_{n-1}$ of endomorphisms of rank at most $n-1$ is a subsemigroup of the endomorphism monoid of $A$. This paper gives a number of necessary and sufficient conditions for $S_{n-1}$ to be generated by idempotents. These conditions are satisfied by finitely generated free modules over Euclidean domains and by free left $T$-sets of finite rank, where $T$ is cancellative monoid in which every finitely generated left ideal is principal.
We consider algebras for which the operation PC of pure closure of subsets satisfies the exchange property. Subsets that are independent with respect to PC are directly independent. We investigate algebras in which PC satisfies the exchange property and which are relatively free on a directly independent generating subset. Examples of such algebras include independence algebras and dinitely generated free modules over principal ideal domains.
Let A be a finite set with |A| > 2. We describe all clones on A containing the set SA of all permutations of A among its unary operations. (A clone on A is a composition closed set of finitary operations on A containing all projections). With a few exceptions such a clone C is either essentially unary or cellular i.e. there exists a monoid M of self-maps of A containing SA such that either C = (= all essentially unary operations agreeing with some f ∊ M) or C = ∪ Гh where 1 < h ≤ |A| and Гh consists of all finitary operations on A taking at most h values. The exceptions are subclones of Burle's clone or of its variant (provided |A| is even).
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.