We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
for all integers $n\geq k$, where $a_1,\dots ,a_k,x_0,\dots , x_{k-1}\in \mathbb {Z},$ with $a_k\neq 0$. In 2017, Sanna posed an open question to classify primes p for which the quotient set of $(x_n)_{n\geq 0}$ is dense in $\mathbb {Q}_p$. In a recent paper, we showed that if the characteristic polynomial of the recurrence sequence has a root $\pm \alpha $, where $\alpha $ is a Pisot number and if p is a prime such that the characteristic polynomial of the recurrence sequence is irreducible in $\mathbb {Q}_p$, then the quotient set of $(x_n)_{n\geq 0}$ is dense in $\mathbb {Q}_p$. In this article, we answer the problem for certain linear recurrence sequences whose characteristic polynomials are reducible over $\mathbb {Q}$.
A generalisation of the well-known Pell sequence $\{P_n\}_{n\ge 0}$ given by $P_0=0$, $P_1=1$ and $P_{n+2}=2P_{n+1}+P_n$ for all $n\ge 0$ is the k-generalised Pell sequence $\{P^{(k)}_n\}_{n\ge -(k-2)}$ whose first k terms are $0,\ldots ,0,1$ and each term afterwards is given by the linear recurrence $P^{(k)}_n=2P^{(k)}_{n-1}+P^{(k)}_{n-2}+\cdots +P^{(k)}_{n-k}$. For the Pell sequence, the formula $P^2_n+P^2_{n+1}=P_{2n+1}$ holds for all $n\ge 0$. In this paper, we prove that the Diophantine equation
A subset of positive integers F is a Schreier set if it is nonempty and $|F|\leqslant \min F$ (here $|F|$ is the cardinality of F). For each positive integer k, we define $k\mathcal {S}$ as the collection of all the unions of at most k Schreier sets. Also, for each positive integer n, let $(k\mathcal {S})^n$ be the collection of all sets in $k\mathcal {S}$ with maximum element equal to n. It is well known that the sequence $(|(1\mathcal {S})^n|)_{n=1}^\infty $ is the Fibonacci sequence. In particular, the sequence satisfies a linear recurrence. We show that the sequence $(|(k\mathcal {S})^n|)_{n=1}^\infty $ satisfies a linear recurrence for every positive k.
Leonetti and Luca [‘On the iterates of the shifted Euler’s function’, Bull. Aust. Math. Soc., to appear] have shown that the integer sequence $(x_n)_{n\geq 1}$ defined by $x_{n+2}=\phi (x_{n+1})+\phi (x_{n})+k$, where $x_1,x_2\geq 1$, $k\geq 0$ and $2 \mid k$, is bounded by $4^{X^{3^{k+1}}}$, where $X=(3x_1+5x_2+7k)/2$. We improve this result by showing that the sequence $(x_n)$ is bounded by $2^{2X^2+X-3}$, where $X=x_1+x_2+2k$.
Let $\varphi $ be Euler’s function and fix an integer $k\ge 0$. We show that for every initial value $x_1\ge 1$, the sequence of positive integers $(x_n)_{n\ge 1}$ defined by $x_{n+1}=\varphi (x_n)+k$ for all $n\ge 1$ is eventually periodic. Similarly, for all initial values $x_1,x_2\ge 1$, the sequence of positive integers $(x_n)_{n\ge 1}$ defined by $x_{n+2}=\varphi (x_{n+1})+\varphi (x_n)+k$ for all $n\ge 1$ is eventually periodic, provided that k is even.
Let $d \ge 3$ be an integer and let $P \in \mathbb{Z}[x]$ be a polynomial of degree d whose Galois group is $S_d$. Let $(a_n)$ be a non-degenerate linearly recursive sequence of integers which has P as its characteristic polynomial. We prove, under the generalised Riemann hypothesis, that the lower density of the set of primes which divide at least one non-zero element of the sequence $(a_n)$ is positive.
Let $(x_n)_{n\geq 0}$ be a linear recurrence of order $k\geq 2$ satisfying $x_n=a_1x_{n-1}+a_2x_{n-2}+\cdots +a_kx_{n-k}$ for all integers $n\geq k$, where $a_1,\ldots ,a_k,x_0,\ldots , x_{k-1}\in \mathbb {Z},$ with $a_k\neq 0$. Sanna [‘The quotient set of k-generalised Fibonacci numbers is dense in $\mathbb {Q}_p$’, Bull. Aust. Math. Soc.96(1) (2017), 24–29] posed the question of classifying primes p for which the quotient set of $(x_n)_{n\geq 0}$ is dense in $\mathbb {Q}_p$. We find a sufficient condition for denseness of the quotient set of the kth-order linear recurrence $(x_n)_{n\geq 0}$ satisfying $ x_{n}=a_1x_{n-1}+a_2x_{n-2}+\cdots +a_kx_{n-k}$ for all integers $n\geq k$ with initial values $x_0=\cdots =x_{k-2}=0,x_{k-1}=1$, where $a_1,\ldots ,a_k\in \mathbb {Z}$ and $a_k=1$. We show that, given a prime p, there are infinitely many recurrence sequences of order $k\geq 2$ whose quotient sets are not dense in $\mathbb {Q}_p$. We also study the quotient sets of linear recurrence sequences with coefficients in certain arithmetic and geometric progressions.
Recently Ovsienko and Tabachnikov considered extensions of Somos and Gale-Robinson sequences, defined over the algebra of dual numbers. Ovsienko used the same idea to construct so-called shadow sequences derived from other nonlinear recurrence relations exhibiting the Laurent phenomenon, with the original motivation being the hope that these examples should lead to an appropriate notion of a cluster superalgebra, incorporating Grassmann variables. Here, we present various explicit expressions for the shadow of Somos-4 sequences and describe the solution of a general Somos-4 recurrence defined over the
$\mathbb{C}$
-algebra of dual numbers from several different viewpoints: analytic formulae in terms of elliptic functions, linear difference equations, and Hankel determinants.
We prove a quantitative partial result in support of the dynamical Mordell–Lang conjecture (also known as the DML conjecture) in positive characteristic. More precisely, we show the following: given a field K of characteristic p, a semiabelian variety X defined over a finite subfield of K and endowed with a regular self-map
$\Phi :X{\longrightarrow } X$
defined over K, a point
$\alpha \in X(K)$
and a subvariety
$V\subseteq X$
, then the set of all nonnegative integers n such that
$\Phi ^n(\alpha )\in V(K)$
is a union of finitely many arithmetic progressions along with a subset S with the property that there exists a positive real number A (depending only on X,
$\Phi $
,
$\alpha $
and V) such that for each positive integer M,
We show that in a parametric family of linear recurrence sequences
$a_1(\alpha ) f_1(\alpha )^n + \cdots + a_k(\alpha ) f_k(\alpha )^n$
with the coefficients
$a_i$
and characteristic roots
$f_i$
,
$i=1, \ldots ,k$
, given by rational functions over some number field, for all but a set of elements
$\alpha $
of bounded height in the algebraic closure of
${\mathbb Q}$
, the Skolem problem is solvable, and the existence of a zero in such a sequence can be effectively decided. We also discuss several related questions.
For a polynomial $f(x)\in\mathbb{Q}[x]$ and rational numbers c, u, we put $f_c(x)\coloneqq f(x)+c$, and consider the Zsigmondy set $\calZ(f_c,u)$ associated to the sequence $\{f_c^n(u)-u\}_{n\geq 1}$, see Definition 1.1, where $f_c^n$ is the n-st iteration of fc. In this paper, we prove that if u is a rational critical point of f, then there exists an Mf > 0 such that $\mathbf M_f\geq \max_{c\in \mathbb{Q}}\{\#\calZ(f_c,u)\}$.
Applying circle inversion on a square grid filled with circles, we obtain a configuration that we call a fabric of kissing circles. We focus on the curvature inside the individual components of the fabric, which are two orthogonal frames and two orthogonal families of chains. We show that the curvatures of the frame circles form a doubly infinite arithmetic sequence (bi-sequence), whereas the curvatures in each chain are arranged in a quadratic bi-sequence. We also prove a sufficient condition for the fabric to be integral.
Let
$ (G_n)_{n=0}^{\infty } $
be a nondegenerate linear recurrence sequence whose power sum representation is given by
$ G_n = a_1(n) \alpha _1^n + \cdots + a_t(n) \alpha _t^n $
. We prove a function field analogue of the well-known result in the number field case that, under some nonrestrictive conditions,
$ |{G_n}| \geq ( \max _{j=1,\ldots ,t} |{\alpha _j}| )^{n(1-\varepsilon )} $
for
$ n $
large enough.
We examine a recursive sequence in which
$s_n$
is a literal description of what the binary expansion of the previous term
$s_{n-1}$
is not. By adapting a technique of Conway, we determine the limiting behaviour of
$\{s_n\}$
and dynamics of a related self-map of
$2^{\mathbb {N}}$
. Our main result is the existence and uniqueness of a pair of binary sequences, each the complement-description of the other. We also take every opportunity to make puns.
We consider frieze sequences corresponding to sequences of cluster mutations for affine D- and E-type quivers. We show that the cluster variables satisfy linear recurrences with periodic coefficients, which imply the constant coefficient relations found by Keller and Scherotzke. Viewing the frieze sequence as a discrete dynamical system, we reduce it to a symplectic map on a lower dimensional space and prove Liouville integrability of the latter.
Recently E. Bombieri and N. M. Katz (2010) demonstrated that several well-known results about the distribution of values of linear recurrence sequences lead to interesting statements for Frobenius traces of algebraic curves. Here we continue this line of study and establish the Möbius randomness law quantitatively for the normalised form of Frobenius traces.
We conjecture that bounded generalised polynomial functions cannot be generated by finite automata, except for the trivial case when they are ultimately periodic.
Using methods from ergodic theory, we are able to partially resolve this conjecture, proving that any hypothetical counterexample is periodic away from a very sparse and structured set. In particular, we show that for a polynomial $p(n)$ with at least one irrational coefficient (except for the constant one) and integer $m\geqslant 2$, the sequence $\lfloor p(n)\rfloor \hspace{0.2em}{\rm mod}\hspace{0.2em}m$ is never automatic.
We also prove that the conjecture is equivalent to the claim that the set of powers of an integer $k\geqslant 2$ is not given by a generalised polynomial.
We consider a family of nonlinear rational recurrences of odd order which was introduced by Heideman and Hogan, and recently rediscovered in the theory of Laurent phenomenon algebras (a generalization of cluster algebras). All of these recurrences have the Laurent property, implying that for a particular choice of initial data (all initial values set to 1) they generate an integer sequence. For these particular sequences, Heideman and Hogan gave a direct proof of integrality by showing that the terms of the sequence also satisfy a linear recurrence relation with constant coefficients. Here we present an analogous result for the general solution of each of these recurrences.
Let $S=\{q_{1},\ldots ,q_{s}\}$ be a finite, non-empty set of distinct prime numbers. For a non-zero integer $m$, write $m=q_{1}^{r_{1}}\cdots q_{s}^{r_{s}}M$, where $r_{1},\ldots ,r_{s}$ are non-negative integers and $M$ is an integer relatively prime to $q_{1}\cdots q_{s}$. We define the $S$-part $[m]_{S}$ of $m$ by $[m]_{S}:=q_{1}^{r_{1}}\cdots q_{s}^{r_{s}}$. Let $(u_{n})_{n\geqslant 0}$ be a linear recurrence sequence of integers. Under certain necessary conditions, we establish that for every $\unicode[STIX]{x1D700}>0$, there exists an integer $n_{0}$ such that $[u_{n}]_{S}\leqslant |u_{n}|^{\unicode[STIX]{x1D700}}$ holds for $n>n_{0}$. Our proof is ineffective in the sense that it does not give an explicit value for $n_{0}$. Under various assumptions on $(u_{n})_{n\geqslant 0}$, we also give effective, but weaker, upper bounds for $[u_{n}]_{S}$ of the form $|u_{n}|^{1-c}$, where $c$ is positive and depends only on $(u_{n})_{n\geqslant 0}$ and $S$.