We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We give a complete classification of finite subgroups of automorphisms of K3 surfaces up to deformation. The classification is in terms of Hodge theoretic data associated to certain conjugacy classes of finite subgroups of the orthogonal group of the K3 lattice. The moduli theory of K3 surfaces, in particular the surjectivity of the period map and the strong Torelli theorem allow us to interpret this datum geometrically. Our approach is computer aided and involves Hermitian lattices over number fields.
The main purpose of this article is to define a quadratic analogue of the Chern character, the so-called Borel character, that identifies rational higher Grothendieck-Witt groups with a sum of rational Milnor-Witt (MW)-motivic cohomologies and rational motivic cohomologies. We also discuss the notion of ternary laws due to Walter, a quadratic analogue of formal group laws, and compute what we call the additive ternary laws, associated with MW-motivic cohomology. Finally, we provide an application of the Borel character by showing that the Milnor-Witt K-theory of a field F embeds into suitable higher Grothendieck-Witt groups of F modulo explicit torsion.
We develop the relationship between quaternionic hyperbolic geometry and arithmetic counting or equidistribution applications, that arises from the action of arithmetic groups on quaternionic hyperbolic spaces, especially in dimension 2. We prove a Mertens counting formula for the rational points over a definite quaternion algebra A over
${\mathbb{Q}}$
in the light cone of quaternionic Hermitian forms, as well as a Neville equidistribution theorem of the set of rational points over A in quaternionic Heisenberg groups.
A bilinear map $\varPhi :\mathbb {R}^r\times \mathbb {R}^s\to \mathbb {R}^n$ is nonsingular if $\varPhi (\overrightarrow {a},\overrightarrow {b})=\overrightarrow {0}$ implies $\overrightarrow {a}=\overrightarrow {0}$ or $\overrightarrow {b}=\overrightarrow {0}$. These maps are of interest to topologists, and are instrumental for the study of vector bundles over real projective spaces. The main purpose of this paper is to produce examples of such maps in the range $24\leqslant r\leqslant 32,\ 24\leqslant s\leqslant 32,$ using the arithmetic of octonions (otherwise known as Cayley numbers) as an effective tool. While previous constructions in lower dimensional cases use ad hoc techniques, our construction follows a systematic procedure and subsumes those techniques into a uniform perspective.
A system of quadratic forms is associated to every generalised quadratic form over a division algebra with involution of the first kind in characteristic two. It is shown that this system determines the isotropy behaviour and the isometry class of generalised quadratic forms. An application of this construction to the Witt index of generalised quadratic forms is also given.
In characteristic two, some criteria are obtained for a symmetric square-central element of a totally decomposable algebra with orthogonal involution, to be contained in an invariant quaternion subalgebra.
The representation theory of semisimple algebraic groups over the complex numbers (equivalently, semisimple complex Lie algebras or Lie groups, or real compact Lie groups) and the questions of whether a given complex representation is symplectic or orthogonal have been solved since at least the 1950s. Similar results for Weyl modules of split reductive groups over fields of characteristic different from 2 hold by using similar proofs. This paper considers analogues of these results for simple, induced, and tilting modules of split reductive groups over fields of prime characteristic as well as a complete answer for Weyl modules over fields of characteristic 2.
We consider bihomogeneous polynomials on complex Euclidean spaces that are positive outside the origin and obtain effective estimates on certain modifications needed to turn them into squares of norms of vector-valued polynomials on complex Euclidean space. The corresponding results for hypersurfaces in complex Euclidean spaces are also proved. The results can be considered as Hermitian analogues of Hilbert's seventeenth problem on representing a positive definite quadratic form on $\mathbb{R}^n$ as a sum of squares of rational functions. They can also be regarded as effective estimates on the power of a Hermitian line bundle required for isometric projective embedding. Further applications are discussed.
Let $n=2m$ be even and denote by $\text{S}{{\text{p}}_{n}}\left( F \right)$ the symplectic group of rank $m$ over an infinite field $F$ of characteristic different from 2. We show that any $n\times n$ symmetric matrix $A$ is equivalent under symplectic congruence transformations to the direct sum of $m\times m$ matrices $B$ and $C$, with $B$ diagonal and $C$ tridiagonal. Since the $\text{S}{{\text{p}}_{n}}\left( F \right)$-module of symmetric $n\times n$ matrices over $F$ is isomorphic to the adjoint module $\mathfrak{s}{{\mathfrak{p}}_{n}}\left( F \right)$, we infer that any adjoint orbit of $\text{S}{{\text{p}}_{n}}\left( F \right)$ in $\mathfrak{s}{{\mathfrak{p}}_{n}}\left( F \right)$ has a representative in the sum of $3m-1$ root spaces, which we explicitly determine.
Fundamental calculations on singular invariant hyperfunctions on the n ×n square matrix space and on the 2n × 2n alternating matrix space are considered in this paper. By expanding the complex powers of the determinant function or the Pfaffian function into the Laurent series with respect to the complex parameter, we can construct singular invariant hyperfunctions as their Laurent expansion coefficients. The author presents here the exact orders of the poles of the complex powers and determines the exact supports of the Laurent expansion coefficients. By applying these results, we prove that every quasi-relatively invariant hyperfunction can be expressed as a linear combination of the Laurent expansion coefficients of the complex powers and that every singular quasi-relatively invariant hyperfunction is in fact relatively invariant on the generic points of its support. In the last section, we give the formula of the Fourier transforms of singular invariant tempered distributions.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.