We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
In this paper, we investigate the theory of heights in a family of stacky curves following recent work of Ellenberg, Satriano, and Zureick-Brown. We first give an elementary construction of a height which is seen to be dual to theirs. We count rational points having bounded ESZ-B height on a particular stacky curve, answering a question of Ellenberg, Satriano, and Zureick-Brown. We also show that when the Euler characteristic of stacky curves is non-positive, the ESZ-B height coming from the anti-canonical divisor class fails to have the Northcott property. We prove that a stacky version of a conjecture of Vojta is equivalent to the $abc$-conjecture.
The Manin–Peyre conjecture is established for a class of smooth spherical Fano varieties of semisimple rank one. This includes all smooth spherical Fano threefolds of type T as well as some higher-dimensional smooth spherical Fano varieties.
We define a notion of height for rational points with respect to a vector bundle on a proper algebraic stack with finite diagonal over a global field, which generalizes the usual notion for rational points on projective varieties. We explain how to compute this height for various stacks of interest (for instance: classifying stacks of finite groups, symmetric products of varieties, moduli stacks of abelian varieties, weighted projective spaces). In many cases, our uniform definition reproduces ways already in use for measuring the complexity of rational points, while in others it is something new. Finally, we formulate a conjecture about the number of rational points of bounded height (in our sense) on a stack
$\mathcal {X}$
, which specializes to the Batyrev–Manin conjecture when
$\mathcal {X}$
is a scheme and to Malle’s conjecture when
$\mathcal {X}$
is the classifying stack of a finite group.
Jannsen asked whether the rational cycle class map in continuous
$\ell $
-adic cohomology is injective, in every codimension for all smooth projective varieties over a field of finite type over the prime field. As recently pointed out by Schreieder, the integral version of Jannsen’s question is also of interest. We exhibit several examples showing that the answer to the integral version is negative in general. Our examples also have consequences for the coniveau filtration on Chow groups and the transcendental Abel-Jacobi map constructed by Schreieder.
In order to study integral points of bounded log-anticanonical height on weak del Pezzo surfaces, we classify weak del Pezzo pairs. As a representative example, we consider a quartic del Pezzo surface of singularity type $\mathbf {A}_1+\mathbf {A}_3$ and prove an analogue of Manin’s conjecture for integral points with respect to its singularities and its lines.
We prove new results on the distribution of rational points on ramified covers of abelian varieties over finitely generated fields $k$ of characteristic zero. For example, given a ramified cover $\pi : X \to A$, where $A$ is an abelian variety over $k$ with a dense set of $k$-rational points, we prove that there is a finite-index coset $C \subset A(k)$ such that $\pi (X(k))$ is disjoint from $C$. Our results do not seem to be in the range of other methods available at present; they confirm predictions coming from Lang's conjectures on rational points, and also go in the direction of an issue raised by Serre regarding possible applications to the inverse Galois problem. Finally, the conclusions of our work may be seen as a sharp version of Hilbert's irreducibility theorem for abelian varieties.
Let A be an abelian scheme of dimension at least four over a
$\mathbb {Z}$
-finitely generated integral domain R of characteristic zero, and let L be an ample line bundle on A. We prove that the set of smooth hypersurfaces D in A representing L is finite by showing that the moduli stack of such hypersurfaces has only finitely many R-points. We accomplish this by using level structures to interpolate finiteness results between this moduli stack and the stack of canonically polarized varieties.
We prove finiteness results for sets of varieties over number fields with good reduction outside a given finite set of places using cyclic covers. We obtain a version of the Shafarevich conjecture for weighted projective surfaces, double covers of abelian varieties and reduce the Shafarevich conjecture for hypersurfaces to the case of hypersurfaces of high dimension. These are special cases of a general setup for integral points on moduli stacks of cyclic covers, and our arithmetic results are achieved via a version of the Chevalley–Weil theorem for stacks.
A celebrated result by Davis, Putnam, Robinson, and Matiyasevich shows that a set of integers is listable if and only if it is positive existentially definable in the language of arithmetic. We investigate analogues of this result over structures endowed with a listable presentation. When such an analogue holds, the structure is said to have the DPRM property. We prove several results addressing foundational aspects around this problem, such as uniqueness of the listable presentation, transference of the DPRM property under interpretation, and its relation with positive existential bi-interpretability. A first application of our results is the rigorous proof of (strong versions of) several folklore facts regarding transference of the DPRM property. Another application of the theory we develop is that it will allow us to link various Diophantine conjectures to the question of whether the DPRM property holds for global fields. This last topic includes a study of the number of existential quantifiers needed to define a Diophantine set.
Let A be an abelian variety defined over a number field k, let p be an odd prime number and let
$F/k$
be a cyclic extension of p-power degree. Under not-too-stringent hypotheses we give an interpretation of the p-component of the relevant case of the equivariant Tamagawa number conjecture in terms of integral congruence relations involving the evaluation on appropriate points of A of the
${\rm Gal}(F/k)$
-valued height pairing of Mazur and Tate. We then discuss the numerical computation of this pairing, and in particular obtain the first numerical verifications of this conjecture in situations in which the p-completion of the Mordell–Weil group of A over F is not a projective Galois module.
In this article we establish the arithmetic purity of strong approximation for certain semisimple simply connected linear algebraic groups and their homogeneous spaces over a number field $k$. For instance, for any such group $G$ and for any open subset $U$ of $G$ with ${\mathrm {codim}}(G\setminus U, G)\geqslant 2$, we prove that (i) if $G$ is $k$-simple and $k$-isotropic, then $U$ satisfies strong approximation off any finite number of places; and (ii) if $G$ is the spin group of a non-degenerate quadratic form which is not compact over archimedean places, then $U$ satisfies strong approximation off all archimedean places. As a consequence, we prove that the same property holds for affine quadratic hypersurfaces. Our approach combines a fibration method with subgroup actions developed for induction on the codimension of $G\setminus U$, and an affine linear sieve which allows us to produce integral points with almost-prime polynomial values.
Let S be a finite set of primes. We prove that a form of finite Galois descent obstruction is the only obstruction to the existence of
$\mathbb {Z}_{S}$
-points on integral models of Hilbert modular varieties, extending a result of D. Helm and F. Voloch about modular curves. Let L be a totally real field. Under (a special case of) the absolute Hodge conjecture and a weak Serre’s conjecture for mod
$\ell $
representations of the absolute Galois group of L, we prove that the same holds also for the
$\mathcal {O}_{L,S}$
-points.
Let ${\mathcal{X}}$ be a regular variety, flat and proper over a complete regular curve over a finite field such that the generic fiber $X$ is smooth and geometrically connected. We prove that the Brauer group of ${\mathcal{X}}$ is finite if and only Tate’s conjecture for divisors on $X$ holds and the Tate–Shafarevich group of the Albanese variety of $X$ is finite, generalizing a theorem of Artin and Grothendieck for surfaces to arbitrary relative dimension. We also give a formula relating the orders of the group under the assumption that they are finite, generalizing the known formula for a surface.
Let $L/F$ be a quadratic extension of totally real number fields. For any prime $p$ unramified in $L$, we construct a $p$-adic $L$-function interpolating the central values of the twisted triple product $L$-functions attached to a $p$-nearly ordinary family of unitary cuspidal automorphic representations of $\text{Res}_{L\times F/F}(\text{GL}_{2})$. Furthermore, when $L/\mathbb{Q}$ is a real quadratic number field and $p$ is a split prime, we prove a $p$-adic Gross–Zagier formula relating the values of the $p$-adic $L$-function outside the range of interpolation to the syntomic Abel–Jacobi image of generalized Hirzebruch–Zagier cycles.
We discuss the kernel of the localization map from étale motivic cohomology of a variety over a number field to étale motivic cohomology of the base change to its completions. This generalizes the Hasse principle for the Brauer group, and is related to Tate–Shafarevich groups of abelian varieties.
We give a formula relating the order of the Brauer group of a surface fibered over a curve over a finite field to the order of the Tate–Shafarevich group of the Jacobian of the generic fiber. The formula implies that the Brauer group of a smooth and proper surface over a finite field is a square if it is finite.
We show that the image of the Abel–Jacobi map admits functorially a model over the field of definition, with the property that the Abel–Jacobi map is equivariant with respect to this model. The cohomology of this abelian variety over the base field is isomorphic as a Galois representation to the deepest part of the coniveau filtration of the cohomology of the projective variety. Moreover, we show that this model over the base field is dominated by the Albanese variety of a product of components of the Hilbert scheme of the projective variety, and thus we answer a question of Mazur. We also recover a result of Deligne on complete intersections of Hodge level 1.
Let $G$ be a connected linear algebraic group over a number field $k$. Let $U{\hookrightarrow}X$ be a $G$-equivariant open embedding of a $G$-homogeneous space $U$ with connected stabilizers into a smooth $G$-variety $X$. We prove that $X$ satisfies strong approximation with Brauer–Manin condition off a set $S$ of places of $k$ under either of the following hypotheses:
(i)$S$ is the set of archimedean places;
(ii)$S$ is a non-empty finite set and $\bar{k}^{\times }=\bar{k}[X]^{\times }$.
The proof builds upon the case $X=U$, which has been the object of several works.
For the modular variety attached to an arithmetic subgroup of an indefinite unitary group of signature $(1,n+1)$, with $n\geqslant 1$, we study Heegner divisors in the local Picard group over a boundary component of a compactification. For this purpose, we introduce local Borcherds products. We obtain a precise criterion for local Heegner divisors to be torsion elements in the Picard group, and further, as an application, we show that the obstructions to a local Heegner divisor being a torsion element can be described by certain spaces of vector-valued elliptic cusp forms, transforming under a Weil representation.
Let $K$ be an algebraic number field. A cuboid is said to be $K$-rational if its edges and face diagonals lie in $K$. A $K$-rational cuboid is said to be perfect if its body diagonal lies in $K$. The existence of perfect $\mathbb{Q}$-rational cuboids is an unsolved problem. We prove here that there are infinitely many distinct cubic fields $K$ such that a perfect $K$-rational cuboid exists; and that, for every integer $n\geq 2$, there is an algebraic number field $K$ of degree $n$ such that there exists a perfect $K$-rational cuboid.