We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We develop methods for constructing explicit generators, modulo torsion, of the $K_3$-groups of imaginary quadratic number fields. These methods are based on either tessellations of hyperbolic $3$-space or on direct calculations in suitable pre-Bloch groups and lead to the very first proven examples of explicit generators, modulo torsion, of any infinite $K_3$-group of a number field. As part of this approach, we make several improvements to the theory of Bloch groups for $ K_3 $ of any field, predict the precise power of $2$ that should occur in the Lichtenbaum conjecture at $ -1 $ and prove that this prediction is valid for all abelian number fields.
We prove the strong Suslin reciprocity law conjectured by A. Goncharov. The Suslin reciprocity law is a generalization of the Weil reciprocity law to higher Milnor $K$-theory. The Milnor $K$-groups can be identified with the top cohomology groups of the polylogarithmic motivic complexes; Goncharov's conjecture predicts the existence of a contracting homotopy underlying Suslin reciprocity. The main ingredient of the proof is a homotopy invariance theorem for the cohomology of the polylogarithmic motivic complexes in the ‘next to Milnor’ degree. We apply these results to the theory of scissors congruences of hyperbolic polytopes. For every triple of rational functions on a compact projective curve over $\mathbb {C}$ we construct a hyperbolic polytope (defined up to scissors congruence). The hyperbolic volume and the Dehn invariant of this polytope can be computed directly from the triple of rational functions on the curve.
We introduce a generalization
${\rm{\pounds}}_d^{(\alpha)}(X)$
of the finite polylogarithms
${\rm{\pounds}}_d^{(0)}(X) = {{\rm{\pounds}}_d}(X) = \sum\nolimits_{k = 1}^{p - 1} {X^k}/{k^d}$
, in characteristic p, which depends on a parameter α. The special case
${\rm{\pounds}}_1^{(\alpha)}(X)$
was previously investigated by the authors as the inverse, in an appropriate sense, of a parametrized generalization of the truncated exponential which is instrumental in a grading switching technique for nonassociative algebras. Here, we extend such generalization to
${\rm{\pounds}}_d^{(\alpha)}(X)$
in a natural manner and study some properties satisfied by those polynomials. In particular, we find how the polynomials
${\rm{\pounds}}_d^{(\alpha)}(X)$
are related to the powers of
${\rm{\pounds}}_1^{(\alpha)}(X)$
and derive some consequences.
The generalized Soulé character was introduced by H. Nakamura and Z. Wojtkowiak and is a generalization of Soulé’s cyclotomic character. In this paper, we prove that certain linear sums of generalized Soulé characters essentially coincide with the image of generalized Beilinson elements in K-groups under Soulé’s higher regulator maps. This result generalizes Huber–Wildeshaus’ theorem, which is a cyclotomic field case of our results, to an arbitrary number fields.
In this paper we construct a $\mathbb{Q}$-linear tannakian category $\mathsf{MEM}_{1}$ of universal mixed elliptic motives over the moduli space ${\mathcal{M}}_{1,1}$ of elliptic curves. It contains $\mathsf{MTM}$, the category of mixed Tate motives unramified over the integers. Each object of $\mathsf{MEM}_{1}$ is an object of $\mathsf{MTM}$ endowed with an action of $\text{SL}_{2}(\mathbb{Z})$ that is compatible with its structure. Universal mixed elliptic motives can be thought of as motivic local systems over ${\mathcal{M}}_{1,1}$ whose fiber over the tangential base point $\unicode[STIX]{x2202}/\unicode[STIX]{x2202}q$ at the cusp is a mixed Tate motive. The basic structure of the tannakian fundamental group of $\mathsf{MEM}$ is determined and the lowest order terms of a set (conjecturally, a minimal generating set) of relations are deduced from computations of Brown. This set of relations includes the arithmetic relations, which describe the ‘infinitesimal Galois action’. We use the presentation to give a new and more conceptual proof of the Ihara–Takao congruences.
In this work, we s uggest a defnition for the category of mixed motives generated by the motive h1 (E) for E an elliptic curve without complex multiplication. We then compute the cohomology of this category. Modulo a strengthening of the Beilinson-Soulé conjecture, we show that the cohomology of our category agrees with the expected motivic cohomology groups. Finally for each pure motive (Symnh1 (E)) (–1) we construct families of nontrivial motives whose highest associated weight graded piece is (Symnh1 (E)) (–1).
Assuming a version of the Lichtenbaum conjecture, we apply Brauer-Kuroda relations between the Dedekind zeta function of a number field and the zeta function of some of its subfields to prove formulas relating the order of the tame kernel of a number field F with the orders of the tame kernels of some of its subfields. The details are given for fields F which are Galois over ℚ with Galois group the group ℤ/2 × ℤ/2, the dihedral group D2p; p an odd prime, or the alternating group A4. We include numerical results illustrating these formulas.
Let L be a finite Galois extension of a number field K. Let G:= Gal(L/K). Let z1,…, zN ∊ L* \ {1} and let m1 …, mN ∊ ℚl. Let us assume that the linear combination of l-adic polylogarithms (constructed in some given way) is a cocycle on GL and that the formal sum is G-invariant. Then we show that cn determines a unique cocycle sn on GK. We also prove a weak version of Zagier conjecture for l-adic dilogarithm. Finally we show that if c2 is “motivic” (m1,…, mN ∊ ℚ) then s2 is also “motivic”.
We prove that the p-adic zeta-function constructed by Kubota and Leopoldt has the Dirichlet series expansion Where the convergence of the first summation is for the p-adic topology. The proof of this formula relates the values of p(–s, ω1+σ) for s ∈ Zp, with a branch of the ‘sth-fractional derivative’, of a suitable generating function.
We introduce a new conjecture concerning the construction of elements in the annihilator ideal associated to a Galois action on the higher-dimensional algebraic $K$-groups of rings of integers in number fields. Our conjecture ismotivic in the sense that it involves the (transcendental) Borel regulator as well as being related to $l$–adic étale cohomology. In addition, the conjecture generalises the wellknown Coates–Sinnott conjecture. For example, for a totally real extension when $r\,=\,-2,\,-4,\,-6,\,\ldots $ the Coates–Sinnott conjecture merely predicts that zero annihilates ${{K}_{-2r}}$ of the ring of $S$–integers while our conjecture predicts a non-trivial annihilator. By way of supporting evidence, we prove the corresponding (conjecturally equivalent) conjecture for the Galois action on the étale cohomology of the cyclotomic extensions of the rationals.
When $G$ is abelian and $l$ is a prime we show how elements of the relative K-group $K_{0}({\bf Z}_{l}[G], {\bf Q}_{l})$ give rise to annihilator/Fitting ideal relations of certain associated ${\bf Z}[G]$-modules. Examples of this phenomenon are ubiquitous. Particularly, we give examples in which $G$ is the Galois group of an extension of global fields and the resulting annihilator/Fitting ideal relation is closely connected to Stickelberger's Theorem and to the conjectures of Coates and Sinnott, and Brumer. Higher Stickelberger ideals are defined in terms of special values of L-functions; when these vanish we show how to define fractional ideals, generalising the Stickelberger ideals, with similar annihilator properties. The fractional ideal is constructed from the Borel regulator and the leading term in the Taylor series for the L-function. En route, our methods yield new proofs, in the case of abelian number fields, of formulae predicted by Lichtenbaum for the orders of K-groups and étale cohomology groups of rings of algebraic integers.
We continue to study l-adic iterated integrals introduced in the first part. We shall show that the l-adic iterated integrals satisfy essentially the same functional equations as the classical complex iterated integrals. Next we are studying l-adic analogs of classical polylogarithms.
We continue to study l-adic iterated integrals introduced in the first part. We shall calculate explicitly l-adic logarithm and l-adic polylogarithms. Next we shall use these results to study Galois representations on the fundamental group of .
We give a natural construction of framed mixed Tate motives unramified over $\mathbb{Z}$ whose periods are the multiple $\zeta$-values. Namely, for each convergent multiple $\zeta$-value we define two boundary divisors A and B in the moduli space $\overline{\mathcal{M}}_{0,n+3}$ of stable curves of genus zero. The corresponding multiple zeta-motive is the nth cohomology of the pair $(\overline{\mathcal{M}}_{0,n+3}-A,B)$.
We are studying some aspects of the action of Galois groups on the torsor of paths connecting two (possibly tangential) points on a projec-tive line minus a finite number of points. We obtain objects which formally behave like classical iterated integrals and polylogarithms. We formulate an analog of Zagier conjecture for these l-adic analogs of iterated integrals and polylogarithms.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.