In this paper we study the cyclic cohomology of certain ×-Hopf algebras: universal enveloping algebras, quantum algebraic tori, the Connes-Moscovici ×-Hopf algebroids and the Kadison bialgebroids. Introducing their stable anti Yetter-Drinfeld modules and cocyclic modules, we compute their cyclic cohomology. Furthermore, we provide a pairing for the cyclic cohomology of ×-Hopf algebras which generalizes the Connes-Moscovici characteristic map to ×-Hopf algebras. This enables us to transfer the ×-Hopf algebra cyclic cocycles to algebra cyclic cocycles.