For a pair $(R,I)$, where $R$ is a standard graded domain of dimension $d$ over an algebraically closed field of characteristic 0, and $I$ is a graded ideal of finite colength, we prove that the existence of $\lim _{p\rightarrow \infty }e_{HK}(R_{p},I_{p})$ is equivalent, for any fixed $m\geqslant d-1$, to the existence of $\lim _{p\rightarrow \infty }\ell (R_{p}/I_{p}^{[p^{m}]})/p^{md}$. This we get as a consequence of Theorem 1.1: as $p\longrightarrow \infty$, the convergence of the Hilbert–Kunz (HK) density function $f(R_{p},I_{p})$ is equivalent to the convergence of the truncated HK density functions $f_{m}(R_{p},I_{p})$ (in $L^{\infty }$ norm) of the mod $p$reductions$(R_{p},I_{p})$, for any fixed $m\geqslant d-1$. In particular, to define the HK density function $f_{R,I}^{\infty }$ in char 0, it is enough to prove the existence of $\lim _{p\rightarrow \infty }f_{m}(R_{p},I_{p})$, for any fixed $m\geqslant d-1$. This allows us to prove the existence of $e_{HK}^{\infty }(R,I)$ in many new cases, for example, when Proj R is a Segre product of curves.