We consider a positively graded noetherian domain R = ⊕n∈NoRn for which R0 is essentially of finite type over a perfect field K of positive characteristic and we assume that the generic fibre of the natural morphism π: Y = Proj(R) → Y0 = Spec(R0) is geometrically connected, geometrically normal and of dimension > 1. Then we give bounds on the “ranks” of the n-th homogeneous part H2(R)n of the second local cohomology module of R with respect to R+:= ⊕m>0Rm for n < 0. If Y is in addition normal, we shall see that the R0-modules H2R+ (R)n are torsion-free for all n < 0 and in this case our bounds on the ranks furnish a vanishing result. From these results we get bounds on the first cohomology of ample invertible sheaves in positive characteristic.