We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
For any smooth proper rigid space $X$ over a complete algebraically closed extension $K$ of $\mathbb {Q}_p$ we give a geometrisation of the $p$-adic Simpson correspondence of rank one in terms of analytic moduli spaces: the $p$-adic character variety is canonically an étale twist of the moduli space of topologically torsion Higgs line bundles over the Hitchin base. This also eliminates the choice of an exponential. The key idea is to relate both sides to moduli spaces of $v$-line bundles. As an application, we study a major open question in $p$-adic non-abelian Hodge theory raised by Faltings, namely which Higgs bundles correspond to continuous representations under the $p$-adic Simpson correspondence. We answer this question in rank one by describing the essential image of the continuous characters $\pi ^{{\mathrm {\acute {e}t}}}_1(X)\to K^\times$ in terms of moduli spaces: for projective $X$ over $K=\mathbb {C}_p$, it is given by Higgs line bundles with vanishing Chern classes like in complex geometry. However, in general, the correct condition is the strictly stronger assumption that the underlying line bundle is a topologically torsion element in the topological group $\operatorname {Pic}(X)$.
We prove that the Hodge–Tate spectral sequence of a proper smooth rigid analytic variety can be reconstructed from its infinitesimal $\mathbb{B}_{\text{dR}}^+$-cohomology through the Bialynicki–Birula map. We also give a new proof of the torsion-freeness of the infinitesimal $\mathbb{B}_{\text{dR}}^+$-cohomology independent of Conrad–Gabber spreading theorem, and a conceptual explanation that the degeneration of Hodge–Tate spectral sequences is equivalent to that of Hodge–de Rham spectral sequences.
Let K be a non-Archimedean valued field with valuation ring R. Let $C_\eta $ be a K-curve with compact-type reduction, so its Jacobian $J_\eta $ extends to an abelian R-scheme J. We prove that an Abel–Jacobi map $\iota \colon C_\eta \to J_\eta $ extends to a morphism $C\to J$, where C is a compact-type R-model of J, and we show this is a closed immersion when the special fiber of C has no rational components. To do so, we apply a rigid-analytic “fiberwise” criterion for a morphism to extend to integral models, and geometric results of Bosch and Lütkebohmert on the analytic structure of $J_\eta $.
In this article, we prove that a complete Noetherian local domain of mixed characteristic $p>0$ with perfect residue field has an integral extension that is an integrally closed, almost Cohen–Macaulay domain such that the Frobenius map is surjective modulo p. This result is seen as a mixed characteristic analog of the fact that the perfect closure of a complete local domain in positive characteristic is almost Cohen–Macaulay. To this aim, we carry out a detailed study of decompletion of perfectoid rings and establish the Witt-perfect (decompleted) version of André’s perfectoid Abhyankar’s lemma and Riemann’s extension theorem.
Let F be a finite extension of ${\mathbb Q}_p$. Let $\Omega$ be the Drinfeld upper half plane, and $\Sigma^1$ the first Drinfeld covering of $\Omega$. We study the affinoid open subset $\Sigma^1_v$ of $\Sigma^1$ above a vertex of the Bruhat–Tits tree for $\text{GL}_2(F)$. Our main result is that $\text{Pic}\!\left(\Sigma^1_v\right)[p] = 0$, which we establish by showing that $\text{Pic}({\mathbf Y})[p] = 0$ for ${\mathbf Y}$ the Deligne–Lusztig variety of $\text{SL}_2\!\left({\mathbb F}_q\right)$. One formal consequence is a description of the representation $H^1_{{\acute{\text{e}}\text{t}}}\!\left(\Sigma^1_v, {\mathbb Z}_p(1)\right)$ of $\text{GL}_2(\mathcal{O}_F)$ as the p-adic completion of $\mathcal{O}\!\left(\Sigma^1_v\right)^\times$.
We prove some $\ell $-independence results on local constancy of étale cohomology of rigid analytic varieties. As a result, we show that a closed subscheme of a proper scheme over an algebraically closed complete non-archimedean field has a small open neighbourhood in the analytic topology such that, for every prime number $\ell $ different from the residue characteristic, the closed subscheme and the open neighbourhood have the same étale cohomology with ${\mathbb Z}/\ell {\mathbb Z}$-coefficients. The existence of such an open neighbourhood for each $\ell $ was proved by Huber. A key ingredient in the proof is a uniform refinement of a theorem of Orgogozo on the compatibility of the nearby cycles over general bases with base change.
We study fundamental properties of analytic K-theory of Tate rings such as homotopy invariance, Bass fundamental theorem, Milnor excision, and descent for admissible coverings.
We transfer several elementary geometric properties of rigid-analytic spaces to the world of adic spaces, more precisely to the category of adic spaces which are locally of (weakly) finite type over a non-archimedean field. This includes normality, irreducibility (in particular, irreducible components), and a Stein factorization theorem. Most notably, we show that a finite morphism in our category of adic spaces is automatically open if the target is normal and both source and target are of the same pure dimension. Moreover, our version of the Stein factorization theorem includes a statement about the geometric connectedness of fibers which we have not found in the literature of rigid-analytic or Berkovich spaces.
We study horizontal semistable and horizontal de Rham representations of the absolute Galois group of a certain smooth affinoid over a $p$-adic field. In particular, we prove that a horizontal de Rham representation becomes horizontal semistable after a finite extension of the base field. As an application, we show that every de Rham local system on a smooth rigid analytic variety becomes horizontal semistable étale locally around every classical point. We also discuss potentially crystalline loci of de Rham local systems and cohomologically potentially good reduction loci of smooth proper morphisms.
We develop a sheaf cohomology theory of algebraic varieties over an algebraically closed nontrivially valued nonarchimedean field K based on Hrushovski-Loeser’s stable completion. In parallel, we develop a sheaf cohomology of definable subsets in o-minimal expansions of the tropical semi-group
$\Gamma _{\infty }$
, where
$\Gamma $
denotes the value group of K. For quasi-projective varieties, both cohomologies are strongly related by a deformation retraction of the stable completion homeomorphic to a definable subset of
$\Gamma _{\infty }$
. In both contexts, we show that the corresponding cohomology theory satisfies the Eilenberg-Steenrod axioms, finiteness and invariance, and we provide natural bounds of cohomological dimension in each case. As an application, we show that there are finitely many isomorphism types of cohomology groups in definable families. Moreover, due to the strong relation between the stable completion of an algebraic variety and its analytification in the sense of V. Berkovich, we recover and extend results on the singular cohomology of the analytification of algebraic varieties concerning finiteness and invariance.
We offer a systematic study of rigid analytic motives over general rigid analytic spaces, and we develop their six-functor formalism. A key ingredient is an extended proper base change theorem that we are able to justify by reducing to the case of algebraic motives. In fact, more generally, we develop a powerful technique for reducing questions about rigid analytic motives to questions about algebraic motives, which is likely to be useful in other contexts as well. We pay special attention to establishing our results without noetherianity assumptions on rigid analytic spaces. This is indeed possible using Raynaud’s approach to rigid analytic geometry.
from the de Jong fundamental group of the rigid generic fiber to the Bhatt–Scholze pro-étale fundamental group of the special fiber. The construction relies on an interplay between admissible blowups of $\mathfrak {X}$ and normalizations of the irreducible components of $\mathfrak {X}_k$, and employs the Berthelot tubes of these irreducible components in an essential way. Using related techniques, we show that under certain smoothness and semistability assumptions, covering spaces in the sense of de Jong of a smooth rigid space which are tame satisfy étale descent.
We prove a generic smoothness result in rigid analytic geometry over a characteristic zero non-archimedean field. The proof relies on a novel notion of generic points in rigid analytic geometry which are well adapted to ‘spreading out’ arguments, in analogy with the use of generic points in scheme theory. As an application, we develop a six-functor formalism for Zariski-constructible étale sheaves on characteristic zero rigid spaces. Among other things, this implies that characteristic zero rigid spaces support a well-behaved theory of perverse sheaves.
We develop a dimension theory for coadmissible $\widehat {\mathcal {D}}$-modules on rigid analytic spaces and study those which are of minimal dimension, in analogy to the theory of holonomic $\mathcal {D}$-modules in the algebraic setting. We discuss a number of pathologies contained in this subcategory (modules of infinite length, infinite-dimensional fibres). We prove stability results for closed immersions and the duality functor, and show that all higher direct images of integrable connections restricted to a Zariski open subspace are coadmissible of minimal dimension. It follows that the local cohomology sheaves $\underline {H}^{i}_Z(\mathcal {M})$ with support in a closed analytic subset $Z$ of $X$ are also coadmissible of minimal dimension for any integrable connection $\mathcal {M}$ on $X$.
In this paper we give an interpretation, in terms of derived de Rham complexes, of Scholze's de Rham period sheaf and Tan and Tong's crystalline period sheaf.
We provide a new formalism of de Rham–Witt complexes in the logarithmic setting. This construction generalises a result of Bhatt–Lurie–Mathew and agrees with those of Hyodo–Kato and Matsuue for log-smooth schemes of log-Cartier type. We then use our construction to study the monodromy action and slopes of Frobenius on log crystalline cohomology.
In the 1970s, Dwork defined the logarithmic growth (log-growth for short) filtrations for $p$-adic differential equations $Dx=0$ on the $p$-adic open unit disc $|t|<1$, which measure the asymptotic behavior of solutions $x$ as $|t|\to 1^{-}$. Then, Dwork calculated the log-growth filtration for $p$-adic Gaussian hypergeometric differential equation. In the late 2000s, Chiarellotto and Tsuzuki proposed a fundamental conjecture on the log-growth filtrations for $(\varphi ,\nabla )$-modules over $K[\![t]\!]_0$, which can be regarded as a generalization of Dwork's calculation. In this paper, we prove a generalization of the conjecture to $(\varphi ,\nabla )$-modules over the bounded Robba ring. As an application, we prove a generalization of Dwork's conjecture proposed by Chiarellotto and Tsuzuki on the specialization property for log-growth Newton polygons.
We construct examples of smooth proper rigid-analytic varieties admitting formal models with projective special fibers and violating Hodge symmetry for cohomology in degrees ${\geq }3$. This answers negatively the question raised by Hansen and Li.
Nous développons dans cet article des techniques d'aplatissement des faisceaux cohérents en géométrie de Berkovich, en nous inspirant de la stratégie générale que Raynaud et Gruson ont mise en œuvre pour traiter le problème analogue en théorie des schémas. Nous donnons ensuite quelques applications à l’étude des morphismes entre espaces analytiques compacts, et obtenons notamment une description de l'image d'un tel morphisme.
Rapoport–Zink spaces are deformation spaces for $p$-divisible groups with additional structure. At infinite level, they become preperfectoid spaces. Let ${{\mathscr M}}_{\infty }$ be an infinite-level Rapoport–Zink space of EL type, and let ${{\mathscr M}}_{\infty }^{\circ }$ be one connected component of its geometric fiber. We show that ${{\mathscr M}}_{\infty }^{\circ }$ contains a dense open subset which is cohomologically smooth in the sense of Scholze. This is the locus of $p$-divisible groups which do not have any extra endomorphisms. As a corollary, we find that the cohomologically smooth locus in the infinite-level modular curve $X(p^{\infty })^{\circ }$ is exactly the locus of elliptic curves $E$ with supersingular reduction, such that the formal group of $E$ has no extra endomorphisms.