We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We compute odd-degree genus 1 quasimap and Gromov–Witten invariants of moduli spaces of Higgs ${\rm{S}}{{\rm{L}}_2}$-bundles on a curve of genus $g \geqslant 2$. We also compute certain invariants for all prime ranks. This proves some parts of the author’s conjectures on quasimap invariants of moduli spaces of Higgs bundles. More generally, our methods provide a computation scheme for genus 1 quasimap and Gromov–Witten invariants in the case when degrees of maps are coprime to the rank. This requires an analysis of the localisation formula for certain Quot schemes parametrising higher-rank quotients on an elliptic curve. Invariants for degrees that are not coprime to the rank exhibit a very different structure for a reason that we explain.
We give a vanishing and classification result for holomorphic differential forms on smooth projective models of the moduli spaces of pointed K3 surfaces. We prove that there is no nonzero holomorphic k-form for $0<k<10$ and for even $k>19$. In the remaining cases, we give an isomorphism between the space of holomorphic k-forms with that of vector-valued modular forms ($10\leq k \leq 18$) or scalar-valued cusp forms (odd $k\geq 19$) for the modular group. These results are in fact proved in the generality of lattice-polarisation.
In this article, we study quasimaps to moduli spaces of sheaves on a $K3$ surface S. We construct a surjective cosection of the obstruction theory of moduli spaces of $\epsilon $-stable quasimaps. We then establish reduced wall-crossing formulas which relate the reduced Gromov–Witten theory of moduli spaces of sheaves on S and the reduced Donaldson–Thomas theory of $S\times C$, where C is a nodal curve. As applications, we prove the Hilbert-schemes part of the Igusa cusp form conjecture; higher-rank/rank-one Donaldson–Thomas correspondence with relative insertions on $S\times C$, if $g(C)\leq 1$; Donaldson–Thomas/Pandharipande–Thomas correspondence with relative insertions on $S\times \mathbb {P}^1$.
We axiomatise the algebraic properties of toroidal compactifications of (mixed) Shimura varieties and their automorphic vector bundles. A notion of generalised automorphic sheaf is proposed which includes sheaves of (meromorphic) sections of automorphic vector bundles with prescribed vanishing and pole orders along strata in the compactification, and their quotients. These include, for instance, sheaves of Jacobi forms and weakly holomorphic modular forms. Using this machinery, we give a short and purely algebraic proof of the proportionality theorem of Hirzebruch and Mumford.
We prove that the Kodaira dimension of the n-fold universal family of lattice-polarised holomorphic symplectic varieties with dominant and generically finite period map stabilises to the moduli number when n is sufficiently large. Then we study the transition of Kodaira dimension explicitly, from negative to nonnegative, for known explicit families of polarised symplectic varieties. In particular, we determine the exact transition point in the Beauville–Donagi and Debarre–Voisin cases, where the Borcherds
$\Phi _{12}$
form plays a crucial role.
We prove that for $d\in \left\{ 2,3,5,7,13 \right\}$ and $K$ a quadratic (or rational) field of discriminant $D$ and Dirichlet character $\chi $, if a prime $p$ is large enough compared to $D$, there is a newform $f\in {{S}_{2}}({{\Gamma }_{0}}(d{{p}^{2}}))$ with sign $(+1)$ with respect to the Atkin–Lehner involution ${{w}_{{{p}^{2}}}}$ such that $L(f\otimes \chi ,1)\ne 0$. This result is obtained through an estimate of a weighted sum of twists of $L$-functions that generalises a result of Ellenberg. It relies on the approximate functional equation for the $L$-functions $L(f\otimes \chi ,\cdot )$ and a Petersson trace formula restricted to Atkin–Lehner eigenspaces. An application of this nonvanishing theorem will be given in terms of existence of rank zero quotients of some twisted jacobians, which generalises a result of Darmon and Merel.
We construct generators for modules of vector-valued Picard modular forms on a unitary group of type (2, 1) over the Eisenstein integers. We also calculate eigenvalues of Hecke operators acting on cusp forms.
We study the moduli space of a product of stable varieties over the field of complex numbers, as defined via the minimal model program. Our main results are: (a) taking products gives a well-defined morphism from the product of moduli spaces of stable varieties to the moduli space of a product of stable varieties; (b) this map is always finite étale; and (c) this map very often is an isomorphism. Our results generalize and complete the work of Van Opstall in dimension $1$. The local results rely on a study of the cotangent complex using some derived algebro-geometric methods, while the global ones use some differential-geometric input.
In this note we search the parameter space of Horrocks–Mumford quintic threefolds and locate a Calabi–Yau threefold that is modular, in the sense that the $L$-function of its middle-dimensional cohomology is associated with a classical modular form of weight 4 and level 55.
We investigate period maps of polarized variations of Hodge structures of weight one or two. We treat the case when the period domains are bounded symmetric domains. We deal with a relationship between canonical extensions of some Hodge bundles and automorphic forms. As applications, we obtain a canonical bundle formula for certain algebraic fiber spaces, such as Abelian fibrations, K3 fibrations, and solve Iitaka’s famous conjecture Cn,m for some algebraic fiber spaces.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.