We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Let A be an abelian surface over ${\mathbb {Q}}$ whose geometric endomorphism ring is a maximal order in a non-split quaternion algebra. Inspired by Mazur’s theorem for elliptic curves, we show that the torsion subgroup of $A({\mathbb {Q}})$ is $12$-torsion and has order at most $18$. Under the additional assumption that A is of $ {\mathrm{GL}}_2$-type, we give a complete classification of the possible torsion subgroups of $A({\mathbb {Q}})$.
Let $U$ be a smooth affine curve over a number field $K$ with a compactification $X$ and let ${\mathbb {L}}$ be a rank $2$, geometrically irreducible lisse $\overline {{\mathbb {Q}}}_\ell$-sheaf on $U$ with cyclotomic determinant that extends to an integral model, has Frobenius traces all in some fixed number field $E\subset \overline {\mathbb {Q}}_{\ell }$, and has bad, infinite reduction at some closed point $x$ of $X\setminus U$. We show that ${\mathbb {L}}$ occurs as a summand of the cohomology of a family of abelian varieties over $U$. The argument follows the structure of the proof of a recent theorem of Snowden and Tsimerman, who show that when $E=\mathbb {Q}$, then ${\mathbb {L}}$ is isomorphic to the cohomology of an elliptic curve $E_U\rightarrow U$.
Let $p$ be a prime number, $k$ a finite field of characteristic $p>0$ and $K/k$ a finitely generated extension of fields. Let $A$ be a $K$-abelian variety such that all the isogeny factors are neither isotrivial nor of $p$-rank zero. We give a necessary and sufficient condition for the finite generation of $A(K^{\mathrm {perf}})$ in terms of the action of $\mathrm {End}(A)\otimes \mathbb {Q}_p$ on the $p$-divisible group $A[p^{\infty }]$ of $A$. In particular, we prove that if $\mathrm {End}(A)\otimes \mathbb {Q}_p$ is a division algebra, then $A(K^{\mathrm {perf}})$ is finitely generated. This implies the ‘full’ Mordell–Lang conjecture for these abelian varieties. In addition, we prove that all the infinitely $p$-divisible elements in $A(K^{\mathrm {perf}})$ are torsion. These reprove and extend previous results to the non-ordinary case.
The classical Mordell–Weil theorem implies that an abelian variety A over a number field K has only finitely many K-rational torsion points. This finitude of torsion still holds even over the cyclotomic extension $K^{\mathrm {cyc}}=K{\mathbb Q}^{\mathrm {ab}}$ by a result of Ribet. In this article, we consider the finiteness of torsion points of an abelian variety A over the infinite algebraic extension $K_B$ obtained by adjoining the coordinates of all torsion points of an abelian variety B. Assuming the Mumford–Tate conjecture, and up to a finite extension of the base field K, we give a necessary and sufficient condition for the finiteness of $A(K_B)_{\mathrm tors}$ in terms of Mumford–Tate groups. We give a complete answer when both abelian varieties have dimension at most 3, or when both have complex multiplication.
We prove new results on the distribution of rational points on ramified covers of abelian varieties over finitely generated fields $k$ of characteristic zero. For example, given a ramified cover $\pi : X \to A$, where $A$ is an abelian variety over $k$ with a dense set of $k$-rational points, we prove that there is a finite-index coset $C \subset A(k)$ such that $\pi (X(k))$ is disjoint from $C$. Our results do not seem to be in the range of other methods available at present; they confirm predictions coming from Lang's conjectures on rational points, and also go in the direction of an issue raised by Serre regarding possible applications to the inverse Galois problem. Finally, the conclusions of our work may be seen as a sharp version of Hilbert's irreducibility theorem for abelian varieties.
Let $p$ be a prime number. Kęstutis Česnavičius proved that for an abelian variety $A$ over a global field $K$, the $p$-Selmer group $\mathrm {Sel}_{p}(A/L)$ grows unboundedly when $L$ ranges over the $(\mathbb {Z}/p\mathbb {Z})$-extensions of $K$. Moreover, he raised a further problem: is $\dim _{\mathbb {F}_{p}} \text{III} (A/L) [p]$ also unbounded under the above conditions? In this paper, we give a positive answer to this problem in the case $p \neq \mathrm {char}\,K$. As an application, this result enables us to generalize the work of Clark, Sharif and Creutz on the growth of potential $\text{III}$ in cyclic extensions. We also answer a problem proposed by Lim and Murty concerning the growth of the fine Tate–Shafarevich groups.
We prove that torsion codimension
$2$
algebraic cycles modulo rational equivalence on supersingular abelian varieties are algebraically equivalent to zero. As a consequence, we prove that homological equivalence coincides with algebraic equivalence for algebraic cycles of codimension
$2$
on supersingular abelian varieties over the algebraic closure of finite fields.
We provide a direct proof of the Medvedev–Scanlon’s conjecture from Medvedev and Scanlon (Ann. Math. Second Series 179(2014), 81–177) regarding Zariski dense orbits under the action of regular self-maps on split semiabelian varieties defined over a field of characteristic
$0$
. Besides obtaining significantly easier proofs than the ones previously obtained in Ghioca and Scanlon (Trans. Am. Math. Soc. 369(2017), 447–466; for the case of abelian varieties) and Ghioca and Satriano (Trans. Am. Math. Soc. 371(2019), 6341–6358; for the case of semiabelian varieties), our method allows us to exhibit numerous starting points with Zariski dense orbits, which the methods from Ghioca and Scanlon (Trans. Am. Math. Soc. 369(2017), 447–466) and Ghioca and Satriano (Trans. Am. Math. Soc. 371(2019), 6341–6358) could not provide.
Let $\mathcal {A} \rightarrow S$ be an abelian scheme over an irreducible variety over $\mathbb {C}$ of relative dimension $g$. For any simply-connected subset $\Delta$ of $S^{\mathrm {an}}$ one can define the Betti map from $\mathcal {A}_{\Delta }$ to $\mathbb {T}^{2g}$, the real torus of dimension $2g$, by identifying each closed fiber of $\mathcal {A}_{\Delta } \rightarrow \Delta$ with $\mathbb {T}^{2g}$ via the Betti homology. Computing the generic rank of the Betti map restricted to a subvariety $X$ of $\mathcal {A}$ is useful to study Diophantine problems, e.g. proving the geometric Bogomolov conjecture over char $0$ and studying the relative Manin–Mumford conjecture. In this paper we give a geometric criterion to detect this rank. As an application we show that it is maximal after taking a large fibered power (if $X$ satisfies some conditions); it is an important step to prove the bound for the number of rational points on curves (Dimitrov et al., Uniformity in Mordell–Lang for Curves, Preprint (2020), arXiv:2001.10276). Another application is to answer a question of André, Corvaja and Zannier and improve a result of Voisin. We also systematically study its link with the relative Manin–Mumford conjecture, reducing the latter to a simpler conjecture. Our tools are functional transcendence and unlikely intersections for mixed Shimura varieties.
The bounded height conjecture of Bombieri, Masser, and Zannier states that for any sufficiently generic algebraic subvariety of a semiabelian $\overline{\mathbb{Q}}$-variety $G$ there is an upper bound on the Weil height of the points contained in its intersection with the union of all algebraic subgroups having (at most) complementary dimension in $G$. This conjecture has been shown by Habegger in the case where $G$ is either a multiplicative torus or an abelian variety. However, there are new obstructions to his approach if $G$ is a general semiabelian variety. In particular, the lack of Poincaré reducibility means that quotients of a given semiabelian variety are intricate to describe. To overcome this, we study directly certain families of line bundles on $G$. This allows us to demonstrate the conjecture for general semiabelian varieties.
Let K be a complete discrete valuation field of characteristic
$0$
, with not necessarily perfect residue field of characteristic
$p>0$
. We define a Faltings extension of
$\mathcal {O}_K$
over
$\mathbb {Z}_p$
, and we construct a Hodge-Tate filtration for abelian varieties over K by generalizing Fontaine’s construction [Fon82] where he treated the perfect residue field case.
We give upper and lower bounds for the number of rational points on Prym varieties over finite fields. Moreover, we determine the exact maximum and minimum number of rational points on Prym varieties of dimension 2.
Given an abelian variety $A$ of dimension $g$ over a number field $K$, and a prime $\ell $, the ${\ell }^{n} $-torsion points of $A$ give rise to a representation ${\rho }_{A, {\ell }^{n} } : \mathrm{Gal} ( \overline{K} / K)\rightarrow {\mathrm{GL} }_{2g} ( \mathbb{Z} / {\ell }^{n} \mathbb{Z} )$. In particular, we get a mod-$\ell $representation${\rho }_{A, \ell } : \mathrm{Gal} ( \overline{K} / K)\rightarrow {\mathrm{GL} }_{2g} ({ \mathbb{F} }_{\ell } )$ and an $\ell $-adic representation${\rho }_{A, {\ell }^{\infty } } : \mathrm{Gal} ( \overline{K} / K)\rightarrow {\mathrm{GL} }_{2g} ({ \mathbb{Z} }_{\ell } )$. In this paper, we describe the possible determinants of
subquotients of these two representations. These two lists turn out to be remarkably
similar.
Applying our results in dimension $g= 1$, we recover a generalized version of a theorem of Momose on isogeny
characters of elliptic curves over number fields, and obtain, conditionally on the
Generalized Riemann Hypothesis, a generalization of Mazur’s bound on rational
isogenies of prime degree to number fields.
We prove that under any projective embedding of an abelian variety A of dimension g, a complete set of addition laws has cardinality at least g+1, generalizing a result of Bosma and Lenstra for the Weierstrass model of an elliptic curve in ℙ2. In contrast, we prove, moreover, that if k is any field with infinite absolute Galois group, then there exists for every abelian variety A/k a projective embedding and an addition law defined for every pair of k-rational points. For an abelian variety of dimension 1 or 2, we show that this embedding can be the classical Weierstrass model or the embedding in ℙ15, respectively, up to a finite number of counterexamples for ∣k∣≤5 .
We study the arithmetic of abelian varieties over where is an arbitrary field. The main result relates Mordell–Weil groups of certain Jacobians over to homomorphisms of other Jacobians over . Our methods also yield completely explicit points on elliptic curves with unbounded rank over and a new construction of elliptic curves with moderately high rank over .
In this paper, we prove that the unboundedness of ranks in families of Jacobian varieties of twisted Fermat curves is equivalent to the divergence of certain infinite series.
We say that an abelian variety over a $p$-adic field $K$ has anisotropic reduction $(\text{AR})$ if the special fiber of its Néron minimal model does not contain a nontrivial split torus. This includes all abelian varieties with potentially good reduction and, in particular, those with complex or quaternionic multiplication. We give a bound for the size of the $K$-rational torsion subgroup of a $g$-dimensional $\text{AR}$ variety depending only on $g$ and the numerical invariants of $K$ (the absolute ramification index and the cardinality of the residue field). Applying these bounds to abelian varieties over a number field with everywhere locally anisotropic reduction, we get bounds which, as a function of $g$, are close to optimal. In particular, we determine the possible cardinalities of the torsion subgroup of an $\text{AR}$ abelian surface over the rational numbers, up to a set of 11 values which are not known to occur. The largest such value is 72.
Let be an abelian scheme over a scheme S which is quasi-projective over an affine noetherian scheme and let be a symmetric, rigidified, relatively ample line bundle on . We show that there is an isomorphism of line bundles on S, where d is the rank of the (locally free) sheaf . We also show that the numbers 24 and 12d are sharp in the following sense: if N>1 is a common divisor of 12 and 24, then there are data as above such that
In this paper we prove a formula relating the Faltings height of an abelian variety $A$ over $\bar{\mathbb{Q}}$ and the Néron–Tate height of a theta divisor on $A$.