We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Let V be a smooth quasi-projective complex surface such that the first three logarithmic plurigenera
$\overline P_1(V)$
,
$\overline P_2(V)$
and
$\overline P_3(V)$
are equal to 1 and the logarithmic irregularity
$\overline q(V)$
is equal to
$2$
. We prove that the quasi-Albanese morphism
$a_V\colon V\to A(V)$
is birational and there exists a finite set S such that
$a_V$
is proper over
$A(V)\setminus S$
, thus giving a sharp effective version of a classical result of Iitaka [12].
Let be an infinitesimal group scheme, defined over an algebraically closed field of characteristic p. We employ rank varieties of -modules to study the stable Auslander-Reiten quiver of the distribution algebra of . As in case of finite groups, the tree classes of the AR-components are finite or infinite Dynkin diagrams, or Euclidean diagrams. We classify the components of finite and Euclidean type in case is supersolvable or a Frobenius kernel of a smooth, reductive group.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.