We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We compare crystal combinatorics of the level
$2$
Fock space with the classification of unitary irreducible representations of type B rational Cherednik algebras to study how unitarity behaves under parabolic restriction. We show that the crystal operators that remove boxes preserve the combinatorial conditions for unitarity, and that the parabolic restriction functors categorifying the crystals send irreducible unitary representations to unitary representations. Furthermore, we find the supports of the unitary representations.
We extend the classical notion of standardly stratified k-algebra (stated for finite dimensional k-algebras) to the more general class of rings, possibly without 1, with enough idempotents. We show that many of the fundamental results, which are known for classical standardly stratified algebras, can be generalized to this context. Furthermore, new classes of rings appear as: ideally standardly stratified and ideally quasi-hereditary. In the classical theory, it is known that quasi-hereditary and ideally quasi-hereditary algebras are equivalent notions, but in our general setting, this is no longer true. To develop the theory, we use the well-known connection between rings with enough idempotents and skeletally small categories (ringoids or rings with several objects).
In this article, we study localizations of hearts of cotorsion pairs ($\mathcal{U}, \mathcal{V}$) where $\mathcal{U}$ is rigid on an extriangulated category
$\mathcal{B}$
. The hearts of such cotorsion pairs are equivalent to the functor categories over the stable category of
$\mathcal{U}$
(
$\bmod \underline{\mathcal{U}}$
). Inspired by Marsh and Palu (Nagoya Math. J.225(2017), 64–99), we consider the mutation (in the sense of Iyama and Yoshino, Invent. Math.172(1) (2008), 117–168) of
$\mathcal{U}$
that induces a cotorsion pair (
$\mathcal{U}^{\prime}, \mathcal{V}^{\prime}$
). Generally speaking, the hearts of (
$\mathcal{U}, \mathcal{V}$
) and (
$\mathcal{U}^{\prime}, \mathcal{V}^{\prime}$
) are not equivalent to each other, but we will give a generalized pseudo-Morita equivalence between certain localizations of their hearts.
The main result of this paper establishes a bijection between the set of equivalence classes of simple transitive 2-representations with a fixed apex ${\mathcal{J}}$ of a fiat 2-category $\mathscr{C}$ and the set of equivalence classes of faithful simple transitive 2-representations of the fiat 2-subquotient of $\mathscr{C}$ associated with a diagonal ${\mathcal{H}}$-cell in ${\mathcal{J}}$. As an application, we classify simple transitive 2-representations of various categories of Soergel bimodules, in particular, completing the classification in types $B_{3}$ and $B_{4}$.
We prove a conjecture of Rouquier relating the decomposition numbers in category ${\mathcal{O}}$ for a cyclotomic rational Cherednik algebra to Uglov’s canonical basis of a higher level Fock space. Independent proofs of this conjecture have also recently been given by Rouquier, Shan, Varagnolo and Vasserot and by Losev, using different methods. Our approach is to develop two diagrammatic models for this category ${\mathcal{O}}$; while inspired by geometry, these are purely diagrammatic algebras, which we believe are of some intrinsic interest. In particular, we can quite explicitly describe the representations of the Hecke algebra that are hit by projectives under the $\mathsf{KZ}$-functor from the Cherednik category ${\mathcal{O}}$ in this case, with an explicit basis. This algebra has a number of beautiful structures including categorifications of many aspects of Fock space. It can be understood quite explicitly using a homogeneous cellular basis which generalizes such a basis given by Hu and Mathas for cyclotomic KLR algebras. Thus, we can transfer results proven in this diagrammatic formalism to category ${\mathcal{O}}$ for a cyclotomic rational Cherednik algebra, including the connection of decomposition numbers to canonical bases mentioned above, and an action of the affine braid group by derived equivalences between different blocks.
Khovanov–Lauda–Rouquier (KLR) algebras of finite Lie type come with families of standard modules, which under the Khovanov–Lauda–Rouquier categorification correspond to PBW bases of the positive part of the corresponding quantized enveloping algebra. We show that there are no non-zero homomorphisms between distinct standard modules and that all non-zero endomorphisms of a standard module are injective. We present applications to the extensions between standard modules and modular representation theory of KLR algebras.
Finite $W$-algebras are certain associative algebras arising in Lie theory. Each $W$-algebra is constructed from a pair of a semisimple Lie algebra ${\mathfrak{g}}$ (our base field is algebraically closed and of characteristic 0) and its nilpotent element $e$. In this paper we classify finite-dimensional irreducible modules with integral central character over $W$-algebras. In more detail, in a previous paper the first author proved that the component group $A(e)$ of the centralizer of the nilpotent element under consideration acts on the set of finite-dimensional irreducible modules over the $W$-algebra and the quotient set is naturally identified with the set of primitive ideals in $U({\mathfrak{g}})$ whose associated variety is the closure of the adjoint orbit of $e$. In this paper, for a given primitive ideal with integral central character, we compute the corresponding $A(e)$-orbit. The answer is that the stabilizer of that orbit is basically a subgroup of $A(e)$ introduced by G. Lusztig. In the proof we use a variety of different ingredients: the structure theory of primitive ideals and Harish-Chandra bimodules for semisimple Lie algebras, the representation theory of $W$-algebras, the structure theory of cells and Springer representations, and multi-fusion monoidal categories.
In this paper we study rational Cherednik algebras at t = 1 in positive characteristic. We study a finite-dimensional quotient of the rational Cherednik algebra called the restricted rational Cherednik algebra. When the corresponding pseudo-reflection group belongs to the infinite series G(m, d, n), we describe explicitly the block decomposition of the restricted algebra. We also classify all pseudo-reflection groups for which the centre of the corresponding rational Cherednik algebra is regular for generic values of the deformation parameter.
We prove for a large family of rings R that their λ-pure global dimension is greater than one for each infinite regular cardinal λ. This answers in the negative a problem posed by Rosický. The derived categories of such rings then do not satisfy, for any λ, the Adams λ-representability for morphisms. Equivalently, they are examples of well-generated triangulated categories whose λ-abelianization in the sense of Neeman is not a full functor for any λ. In particular, we show that given a compactly generated triangulated category, one may not be able to find a Rosický functor among the λ-abelianization functors.
We show that it is possible to deduce the Calogero-Moser partition of the irreducible representations of the complex reflection groups G(m,d, n) from the corresponding partition for G(m,1,n). This confirms, in the case W = G(m,d,n), a conjecture of Gordon and Martino relating the Calogero-Moser partition to Rouquier families for the corresponding cyclotomic Hecke algebra.
This paper aims to lay the foundations for a combinatorial study, via orthogonal functions and intertwining operators, of category for the rational Cherednik algebra of type G(r, p, n). As a first application, a self-contained and elementary proof of the analogue for the groups G(r, p, n), with r > 1, of Gordon's Theorem (previously Haiman's Conjecture) on the diagonal co-invariant ring is given. No restriction is imposed on p; the result for p ≠ r has been proved by Vale using a technique analogous to Gordon's. Because of the combinatorial application to Haiman's Conjecture, the paper is logically self-contained except for standard facts about complex reflection groups. The main results should be accessible to mathematicians working in algebraic combinatorics who are unfamiliar with the impressive range of ideas used in Gordon's proof of his theorem.
We define analogs of the Jucys-Murphy elements for the affine Temperley-Lieb algebra and give their explicit expansion in terms of the basis of planar Brauer diagrams. These Jucys-Murphy elements are a family of commuting elements in the affine Temperley-Lieb algebra, and we compute their eigenvalues on the generic irreducible representations. We show that they come from Jucys-Murphy elements in the affine Hecke algebra of type A, which in turn come from the Casimir element of the quantum group . We also give the explicit specializations of these results to the finite Temperley-Lieb algebra.
Nazarov [Naz96] introduced an infinite dimensional algebra, which he called the affine Wenzl algebra, in his study of the Brauer algebras. In this paper we study certain “cyclotomic quotients” of these algebras. We construct the irreducible representations of these algebras in the generic case and use this to show that these algebras are free of rank rn(2n−1)!! (when Ω is u-admissible). We next show that these algebras are cellular and give a labelling for the simple modules of the cyclotomic Nazarov-Wenzl algebras over an arbitrary field. In particular, this gives a construction of all of the finite dimensional irreducible modules of the affine Wenzl algebra.
Let $m, n\in\Bbb N$, $V$ be a $2m$-dimensional complex vector space. The irreducible representations of the Brauer's centralizer algebra $B_n(-2m)$ appearing in $V^{\otimes{n}}$ are in 1–1 correspondence to the set of pairs $(\,f,\lamda)$, where $f\in\Z$ with $0\leq f\leq [n/2]$, $and$ $\lam\vdash n-2f$ satisfying $\lam_1\leq m$. In this paper, we first show that each of these representations has a basis consists of eigenvectors for the subalgebra of $B_n(-2m)$ generated by all the Jucys-Murphy operators, and we determine the corresponding eigenvalues. Then we identify these representations with the irreducible representations constructed from a cellular basis of $B_n(-2m)$. Finally, an explicit description of the action of each generator of $B_n(-2m)$ on such a basis is also given, which generalizes earlier work of [15] for Brauer's centralizer algebra $B_n(m)$.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.