We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
The newer cancer treatment technologies hold the potential of providing improved health outcomes at an additional cost. So it becomes obligatory to assess the costs and benefits of a new technology, before defining its clinical value. We assessed the cost-effectiveness of intensity-modulated radiotherapy (IMRT) as compared to 2-dimensional radiotherapy (2-DRT) and 3-dimensional radiotherapy (3D-CRT) for treating head and neck cancers (HNC) in India. The cost-effectiveness of 3-DCRT as compared to 2-DRT was also estimated.
Methods
A probabilistic Markov model was designed. Using a disaggregated societal perspective, lifetime study horizon and 3 percent discount rate, future costs and health outcomes were compared for a cohort of 1000 patients treated with any of the three radiation techniques. Data on health system cost, out of pocket expenditure, and quality of life was assessed through primary data collected from a large tertiary care public sector hospital in India. Data on xerostomia rates following each of the radiation techniques was extracted from the existing randomized controlled trials.
Results
IMRT incurs an incremental cost of $7,072 (2,932–13,258) and $5,164 (463–10,954) per quality-adjusted life year (QALY) gained compared to 2-DRT and 3D-CRT, respectively. Further, 3D-CRT as compared to 2-DRT requires an incremental cost of $8,946 (1,996–19,313) per QALY gained.
Conclusion
Both IMRT and 3D-CRT are not cost-effective at 1 times GDP per capita for treating HNC in India. The costs and benefits of using IMRT for other potential indications (e.g. prostate, lung) require to be assessed before considering its introduction in India.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.