We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We study analogues of Kronecker coefficients for symmetric inverse semigroups, for dual symmetric inverse semigroups and for the inverse semigroups of bijections between subquotients of finite sets. In all cases, we reduce the problem of determination of such coefficients to some group-theoretic and combinatorial problems. For symmetric inverse semigroups, we provide an explicit formula in terms of the classical Kronecker and Littlewood–Richardson coefficients for symmetric groups.
We propose a notion of a proper Ehresmann semigroup based on a three-coordinate description of its generating elements governed by certain labelled directed graphs with additional structure. The generating elements are determined by their domain projection, range projection and σ-class, where σ denotes the minimum congruence that identifies all projections. We prove a structure result on proper Ehresmann semigroups and show that every Ehresmann semigroup has a proper cover. Our covering monoid turns out to be isomorphic to that from the work by Branco, Gomes and Gould and provides a new view of the latter. Proper Ehresmann semigroups all of whose elements admit a three-coordinate description are characterized in terms of partial multiactions of monoids on semilattices. As a consequence, we recover the two-coordinate structure result on proper restriction semigroups.
We call a semigroup right perfect if every object in the category of unitary right acts over that semigroup has a projective cover. In this paper, we generalize results about right perfect monoids to the case of semigroups. In our main theorem, we will give nine conditions equivalent to right perfectness of a factorizable semigroup. We also prove that right perfectness is a Morita invariant for factorizable semigroups.
A semigroup S is said to be right pseudo-finite if the universal right congruence can be generated by a finite set $U\subseteq S\times S$, and there is a bound on the length of derivations for an arbitrary pair $(s,t)\in S\times S$ as a consequence of those in U. This article explores the existence and nature of a minimal ideal in a right pseudo-finite semigroup. Continuing the theme started in an earlier work by Dandan et al., we show that in several natural classes of monoids, right pseudo-finiteness implies the existence of a completely simple minimal ideal. This is the case for orthodox monoids, completely regular monoids, and right reversible monoids, which include all commutative monoids. We also show that certain other conditions imply the existence of a minimal ideal, which need not be completely simple; notably, this is the case for semigroups in which one of the Green’s preorders ${\leq _{\mathcal {L}}}$ or ${\leq _{\mathcal {J}}}$ is left compatible with multiplication. Finally, we establish a number of examples of pseudo-finite monoids without a minimal ideal. We develop an explicit construction that yields such examples with additional desired properties, for instance, regularity or ${\mathcal {J}}$-triviality.
We examine a semigroup analogue of the Kumjian–Renault representation of C*-algebras with Cartan subalgebras on twisted groupoids. Specifically, we represent semigroups with distinguished normal subsemigroups as ‘slice-sections’ of groupoid bundles.
Let X be a monoid scheme. We will show that the stalk at any point of X defines a point of the topos of quasi-coherent sheaves over X. As it turns out, every topos point of is of this form if X satisfies some finiteness conditions. In particular, it suffices for M/M× to be finitely generated when X is affine, where M× is the group of invertible elements.
This allows us to prove that two quasi-projective monoid schemes X and Y are isomorphic if and only if and are equivalent.
The finiteness conditions are essential, as one can already conclude by the work of A. Connes and C. Consani [3]. We will study the topos points of free commutative monoids and show that already for ℕ∞, there are ‘hidden’ points. That is to say, there are topos points which are not coming from prime ideals. This observation reveals that there might be a more interesting ‘geometry of monoids’.
We say that two elements of a group or semigroup are $\Bbbk$-linear conjugates if their images under any linear representation over $\Bbbk$ are conjugate matrices. In this paper we characterize $\Bbbk$-linear conjugacy for finite semigroups (and, in particular, for finite groups) over an arbitrary field $\Bbbk$.
The set of row reduced matrices (and of echelon form matrices) is closed under multiplication. We show that any system of representatives for the $\text{Gl}_{n}(\mathbb{K})$ action on the $n\times n$ matrices, which is closed under multiplication, is necessarily conjugate to one that is in simultaneous echelon form. We call such closed representative systems Grassmannian semigroups. We study internal properties of such Grassmannian semigroups and show that they are algebraic semigroups and admit gradings by the finite semigroup of partial order preserving permutations, with components that are naturally in one–one correspondence with the Schubert cells of the total Grassmannian. We show that there are infinitely many isomorphism types of such semigroups in general, and two such semigroups are isomorphic exactly when they are semiconjugate in $M_{n}(\mathbb{K})$. We also investigate their representation theory over an arbitrary field, and other connections with multiplicative structures on Grassmannians and Young diagrams.
In this paper, we give an explicit construction of a quasi-idempotent in the $q$-rook monoid algebra $R_{n}(q)$ and show that it generates the whole annihilator of the tensor space $U^{\otimes n}$ in $R_{n}(q)$.
In the 1970s, Feldman and Moore classified separably acting von Neumann algebras containing Cartan maximal abelian self-adjoint subalgebras (MASAs) using measured equivalence relations and 2-cocycles on such equivalence relations. In this paper we give a new classification in terms of extensions of inverse semigroups. Our approach is more algebraic in character and less point-based than that of Feldman and Moore. As an application, we give a restatement of the spectral theorem for bimodules in terms of subsets of inverse semigroups. We also show how our viewpoint leads naturally to a description of maximal subdiagonal algebras.
A monoid S is said to be right coherent if every finitely generated subact of every finitely presented right S-act is finitely presented. Left coherency is defined dually and S is coherent if it is both right and left coherent. These notions are analogous to those for a ring R (where, of course, S-acts are replaced by R-modules). Choo et al. have shown that free rings are coherent. In this paper we prove that, correspondingly, any free monoid is coherent, thus answering a question posed by Gould in 1992.
In this note, we first give a characterization of super weakly compact convex sets of a Banach space $X$: a closed bounded convex set $K\,\subset \,X$ is super weakly compact if and only if there exists a ${{w}^{*}}$ lower semicontinuous seminorm $P$ with $P\,\ge \,{{\sigma }_{K}}\,\equiv \,{{\sup }_{x\in K}}\left\langle \,\cdot \,,\,x \right\rangle $ such that ${{P}^{2}}$ is uniformly Fréchet differentiable on each bounded set of ${{X}^{*}}$. Then we present a representation theoremfor the dual of the semigroup swcc$\left( X \right)$ consisting of all the nonempty super weakly compact convex sets of the space $X$.
We use the kernel category to give a finiteness condition for semigroups. As a consequence we provide yet another proof that finitely generated periodic semigroups of matrices are finite.
The covers of cyclic acts over monoids were investigated by Mahmoudi and Renshaw (M. Mahmoudi and J. Renshaw, On covers of cyclic acts over monoids, Semigroup Forum77 (2008), 325–338) and the authors posed some open problems. In the present paper, we give answers to their problems 1 and 5, and we also give a sufficient and necessary condition that a cyclic act has a weakly pullback flat cover.
We introduce the notion of a strong representation of a semigroup in the monoid of endomorphisms of any mathematical structure, and use this concept to provide a theoretical description of the automorphism group of any semigroup. As an application of our general theorems, we extend to semigroups a well-known result concerning automorphisms of groups, and we determine the automorphism groups of certain transformation semigroups and of the fundamental inverse semigroups.
In this paper we prove two main results. The first is a necessary and sufficient condition for a semidirect product of a semilattice by a group to be finitely generated. The second result is a necessary and sufficient condition for such a semidirect product to be finitely presented.
For a semigroup $S$, the finitary power semigroup of $S$, denoted $P_f(S)$, consists of all finite subsets of $S$ under the usual multiplication. The main result of this paper asserts that $P_f(G)$ is not finitely generated for any infinite group $G$.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.