The modules of parallel tool heads with 2R1T degrees of freedom (DOFs), i.e., two rotational DOFs and one translational DOF, have become so important in the field of machine tools that corresponding research studies have attracted extensive attention from both academia and industry. A 3-PUU (P represents a prismatic joint, U represents a universal joint) parallel mechanism with 2R1T DOFs is proposed in this paper, and a detailed discussion about its architecture, geometrical constraints, and mobility characteristics is presented. Furthermore, on the basis of its special geometrical constraint, we derive and explicitly express the parasitic motion of the 3-PUU mechanism. Then, the inverse kinematics problem, the Jacobian matrix calculation and the forward kinematics problem are also investigated. Finally, with a simplified dynamics model, the inverse dynamics analysis for the mechanism is carried out with the Principle of Virtual Work, and corresponding results are compared with that of the 3-PRS mechanism. The above analyses illustrate that the 3-PUU parallel mechanism has good dynamics features, which validates the feasibility of applying this mechanism as a tool head module.