We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We show in this paper how the Laplace transform θ* of the duration θ of an excursion by the occupation process {Λt} of an M/M/∞ system above a given threshold can be obtained by means of continued fraction analysis. The representation of θ* by a continued fraction is established and the [m−1/m] Padé approximants are computed by means of well known orthogonal polynomials, namely associated Charlier polynomials. It turns out that the continued fraction considered is an S fraction and as a consequence the Stieltjes transform of some spectral measure. Then, using classic asymptotic expansion properties of hypergeometric functions, the representation of the Laplace transform θ* by means of Kummer's function is obtained. This allows us to recover an earlier result obtained via complex analysis and the use of the strong Markov property satisfied by the occupation process {Λt}. The continued fraction representation enables us to further characterize the distribution of the random variable θ.
Convergence results are given for transient characteristics of an M/M/∞ system such as the period of time the occupation process remains above a given state, the area swept by this process above this state and the number of customers arriving during this period. These results are precise in contrast to approximations derived in the framework of the Poisson clumping heuristic introduced by Aldous.
We study a class of generalized hypergeometric functions in several variables introduced by A. Korânyi. It is shown that the generalized Gaussian hypergeometric function is the unique solution of a system partial differential equations. Analogues of some classical results such as Kummer relations and Euler integral representations are established. Asymptotic behavior of generalized hypergeometric functions is obtained which includes some known estimates.
We give complex weight functions with respect to which the Jacobi, Laguerre, little q-Jacobi and Askey-Wilson polynomials are orthogonal. The complex functions obtained are weight functions in a wider range of parameters than the real weight functions. They also provide an alternative to the recent distributional weight functions of Morton and Krall, and the more recent hyperfunction weight functions of Kim.
We examine the convergence and analytic properties of a continued fraction of Ramanujan and its connection to the orthogonal polynomials of Meixner-Pollaczek.
Regular C-fractions f(α) = 1 + a1α/1 + a2α/1 + . .. with an = an2 + bn + c + Vn, |Vn| sufficiently small are examined. In the case Vn = 0, exact expressions are obtained which reveal a two sheeted Riemann structure for f(α). If Vn ≠ 0 analytic properties are obtained by means of perturbation theory applied to the associated difference equation. A conjecture that f(α) is the ratio of two entire functions of for an even larger class of C-fractions is proved for the case .
We study orthogonal polynomials for which the weight function is a linear combination of the Jacobi weight function and two delta functions at 1 and — 1. These polynomials can be expressed as 4F3 hypergeometric functions and they satisfy second order differential equations. They include Krall’s Jacobi type polynomials as special cases. The fourth order differential equation for the latter polynomials is derived in a more simple way.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.