We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We build a Shannon orbit equivalence between the universal odometer and a variety of rank-one systems. This is done in a unified manner using what we call flexible classes of rank-one transformations. Our main result is that every flexible class contains an element which is Shannon orbit equivalent to the universal odometer. Since a typical example of flexible class is $\{T\}$ when T is an odometer, our work generalizes a recent result by Kerr and Li, stating that every odometer is Shannon orbit equivalent to the universal odometer. When the flexible class is a singleton, the rank-one transformation given by the main result is explicit. This applies to odometers and Chacon’s map. We also prove that strongly mixing systems, systems with a given eigenvalue, or irrational rotations whose angle belongs to any fixed non-empty open subset of the real line form flexible classes. In particular, strong mixing, rationality or irrationality of the eigenvalues are not preserved under Shannon orbit equivalence.
Entropy of measure-preserving or continuous actions of amenable discrete groups allows for various equivalent approaches. Among them are those given by the techniques developed by Ollagnier and Pinchon on the one hand and the Ornstein–Weiss lemma on the other. We extend these two approaches to the context of actions of amenable topological groups. In contrast to the discrete setting, our results reveal a remarkable difference between the two concepts of entropy in the realm of non-discrete groups: while the first quantity collapses to 0 in the non-discrete case, the second yields a well-behaved invariant for amenable unimodular groups. Concerning the latter, we moreover study the corresponding notion of topological pressure, prove a Goodwyn-type theorem, and establish the equivalence with the uniform lattice approach (for locally compact groups admitting a uniform lattice). Our study elaborates on a version of the Ornstein–Weiss lemma due to Gromov.
An important question in dynamical systems is the classification problem, that is, the ability to distinguish between two isomorphic systems. In this work, we study the topological factors between a family of multidimensional substitutive subshifts generated by morphisms with uniform support. We prove that it is decidable to check whether two minimal aperiodic substitutive subshifts are isomorphic. The strategy followed in this work consists of giving a complete description of the factor maps between these subshifts. Then, we deduce some interesting consequences on coalescence, automorphism groups, and the number of aperiodic symbolic factors of substitutive subshifts. We also prove other combinatorial results on these substitutions, such as the decidability of defining a subshift, the computability of the constant of recognizability, and the conjugacy between substitutions with different supports.
For a class of volume-preserving partially hyperbolic diffeomorphisms (or non-uniformly Anosov) $f\colon {\mathbb {T}}^d\rightarrow {\mathbb {T}}^d$ homotopic to linear Anosov automorphism, we show that the sum of the positive (negative) Lyapunov exponents of f is bounded above (respectively below) by the sum of the positive (respectively negative) Lyapunov exponents of its linearization. We show this for some classes of derived from Anosov (DA) and non-uniformly hyperbolic systems with dominated splitting, in particular for examples described by Bonatti and Viana [SRB measures for partially hyperbolic systems whose central direction is mostly contracting. Israel J. Math.115(1) (2000), 157–193]. The results in this paper address a flexibility program by Bochi, Katok and Rodriguez Hertz [Flexibility of Lyapunov exponents. Ergod. Th. & Dynam. Sys.42(2) (2022), 554–591].
For an arbitrary countable discrete infinite group G, non-singular rank-one actions are introduced. It is shown that the class of non-singular rank-one actions coincides with the class of non-singular $(C,F)$-actions. Given a decreasing sequence of cofinite subgroups in G with $\bigcap _{n=1}^\infty \bigcap _{g\in G}g\Gamma _ng^{-1}=\{1_G\}$, the projective limit of the homogeneous G-spaces $G/\Gamma _n$ as $n\to \infty $ is a G-space. Endowing this G-space with an ergodic non-singular non-atomic measure, we obtain a dynamical system which is called a non-singular odometer. Necessary and sufficient conditions are found for a rank-one non-singular G-action to have a finite factor and a non-singular odometer factor in terms of the underlying $(C,F)$-parameters. Similar conditions are also found for a rank-one non-singular G-action to be isomorphic to an odometer. Minimal Radon uniquely ergodic locally compact Cantor models are constructed for the non-singular rank-one extensions of odometers. Several concrete examples are constructed and several facts are proved that illustrate a sharp difference of the non-singular non-commutative case from the classical finite measure preserving one: odometer actions which are not of rank-one and factors of rank-one systems which are not of rank one; however, each probability preserving odometer is a factor of an infinite measure preserving rank-one system, etc.
We study shift spaces over a finite alphabet that can be approximated by mixing shifts of finite type in the sense of (pseudo)metrics connected to Ornstein’s $\bar {d}$ metric ($\bar {d}$-approachable shift spaces). The class of $\bar {d}$-approachable shifts can be considered as a topological analog of measure-theoretical Bernoulli systems. The notion of $\bar {d}$-approachability, together with a closely connected notion of $\bar {d}$-shadowing, was introduced by Konieczny, Kupsa, and Kwietniak [Ergod. Th. & Dynam. Sys.43(3) (2023), 943–970]. These notions were developed with the aim of significantly generalizing specification properties. Indeed, many popular variants of the specification property, including the classic one and the almost/weak specification property, ensure $\bar {d}$-approachability and $\bar {d}$-shadowing. Here, we study further properties and connections between $\bar {d}$-shadowing and $\bar {d}$-approachability. We prove that $\bar {d}$-shadowing implies $\bar {d}$-stability (a notion recently introduced by Tim Austin). We show that for surjective shift spaces with the $\bar {d}$-shadowing property the Hausdorff pseudodistance ${\bar d}^{\mathrm {H}}$ between shift spaces induced by $\bar {d}$ is the same as the Hausdorff distance between their simplices of invariant measures with respect to the Hausdorff distance induced by Ornstein’s metric $\bar {d}$ between measures. We prove that without $\bar {d}$-shadowing this need not to be true (it is known that the former distance always bounds the latter). We provide examples illustrating these results, including minimal examples and proximal examples of shift spaces with the $\bar {d}$-shadowing property. The existence of such shift spaces was announced in the earlier paper mentioned above. It shows that $\bar {d}$-shadowing indeed generalizes the specification property.
In the context of random amenable group actions, we introduce the notions of random upper metric mean dimension with potentials and the random upper measure-theoretical metric mean dimension. Besides, we establish a variational principle for the random upper metric mean dimensions. At the end, we study the equilibrium state for random upper metric mean dimensions.
Feng and Huang [Variational principle for weighted topological pressure. J. Math. Pures Appl. (9)106 (2016), 411–452] introduced weighted topological entropy and pressure for factor maps between dynamical systems and established its variational principle. Tsukamoto [New approach to weighted topological entropy and pressure. Ergod. Th. & Dynam. Sys.43 (2023), 1004–1034] redefined those invariants quite differently for the simplest case and showed via the variational principle that the two definitions coincide. We generalize Tsukamoto’s approach, redefine the weighted topological entropy and pressure for higher dimensions, and prove the variational principle. Our result allows for an elementary calculation of the Hausdorff dimension of affine-invariant sets such as self-affine sponges and certain sofic sets that reside in Euclidean space of arbitrary dimension.
We prove that a generic probability measure-preserving (p.m.p.) action of a countable amenable group G has scaling entropy that cannot be dominated by a given rate of growth. As a corollary, we obtain that there does not exist a topological action of G for which the set of ergodic invariant measures coincides with the set of all ergodic p.m.p. G-systems of entropy zero. We also prove that a generic action of a residually finite amenable group has scaling entropy that cannot be bounded from below by a given sequence. In addition, we show an example of an amenable group that has such a lower bound for every free p.m.p. action.
We prove that if two free probability-measure-preserving (p.m.p.) ${\mathbb Z}$-actions are Shannon orbit equivalent, then they have the same entropy. The argument also applies more generally to yield the same conclusion for free p.m.p. actions of finitely generated virtually Abelian groups. Together with the isomorphism theorems of Ornstein and Ornstein–Weiss and the entropy invariance results of Austin and Kerr–Li in the non-virtually-cyclic setting, this shows that two Bernoulli actions of any non-locally-finite countably infinite amenable group are Shannon orbit equivalent if and only if they are measure conjugate. We also show, at the opposite end of the stochastic spectrum, that every ${\mathbb Z}$-odometer is Shannon orbit equivalent to the universal ${\mathbb Z}$-odometer.
Given the full shift over a countable state space on a countable amenable group, we develop its thermodynamic formalism. First, we introduce the concept of pressure and, using tiling techniques, prove its existence and further properties, such as an infimum rule. Next, we extend the definitions of different notions of Gibbs measures and prove their existence and equivalence, given some regularity and normalization criteria on the potential. Finally, we provide a family of potentials that nontrivially satisfy the conditions for having this equivalence and a nonempty range of inverse temperatures where uniqueness holds.
We find sufficient conditions for bounded density shifts to have a unique measure of maximal entropy. We also prove that every measure of maximal entropy of a bounded density shift is fully supported. As a consequence of this, we obtain that bounded density shifts are surjunctive.
We define the topological multiplicity of an invertible topological system $(X,T)$ as the minimal number k of real continuous functions $f_1,\ldots , f_k$ such that the functions $f_i\circ T^n$, $n\in {\mathbb {Z}}$, $1\leq i\leq k,$ span a dense linear vector space in the space of real continuous functions on X endowed with the supremum norm. We study some properties of topological systems with finite multiplicity. After giving some examples, we investigate the multiplicity of subshifts with linear growth complexity.
We characterize measure-theoretic sequence entropy pairs of continuous actions of abelian groups using mean sensitivity. This addresses an open question of Li and Yu [On mean sensitive tuples. J. Differential Equations297 (2021), 175–200]. As a consequence of our results, we provide a simpler characterization of Kerr and Li’s independence sequence entropy pairs ($\mu $-IN-pairs) when the measure is ergodic and the group is abelian.
For integers a and $b\geq 2$, let $T_a$ and $T_b$ be multiplication by a and b on $\mathbb {T}=\mathbb {R}/\mathbb {Z}$. The action on $\mathbb {T}$ by $T_a$ and $T_b$ is called $\times a,\times b$ action and it is known that, if a and b are multiplicatively independent, then the only $\times a,\times b$ invariant and ergodic measure with positive entropy of $T_a$ or $T_b$ is the Lebesgue measure. However, it is not known whether there exists a non-trivial $\times a,\times b$ invariant and ergodic measure. In this paper, we study the empirical measures of $x\in \mathbb {T}$ with respect to the $\times a,\times b$ action and show that the set of x such that the empirical measures of x do not converge to any measure has Hausdorff dimension one and the set of x such that the empirical measures can approach a non-trivial $\times a,\times b$ invariant measure has Hausdorff dimension zero. Furthermore, we obtain some equidistribution result about the $\times a,\times b$ orbit of x in the complement of a set of Hausdorff dimension zero.
We study curve-shortening flow for twisted curves in $\mathbb {R}^3$ (that is, curves with nowhere vanishing curvature $\kappa $ and torsion $\tau $) and define a notion of torsion-curvature entropy. Using this functional, we show that either the curve develops an inflection point or the eventual singularity is highly irregular (and likely impossible). In particular, it must be a Type-II singularity which admits sequences along which ${\tau }/{\kappa ^2} \to \infty $. This contrasts strongly with Altschuler’s planarity theorem, which shows that ${\tau }/{\kappa } \to 0$ along any essential blow-up sequence.
Given a locally finite graph $\Gamma $, an amenable subgroup G of graph automorphisms acting freely and almost transitively on its vertices, and a G-invariant activity function $\unicode{x3bb} $, consider the free energy $f_G(\Gamma ,\unicode{x3bb} )$ of the hardcore model defined on the set of independent sets in $\Gamma $ weighted by $\unicode{x3bb} $. Under the assumption that G is finitely generated and its word problem can be solved in exponential time, we define suitable ensembles of hardcore models and prove the following: if $\|\unicode{x3bb} \|_\infty < \unicode{x3bb} _c(\Delta )$, there exists a randomized $\epsilon $-additive approximation scheme for $f_G(\Gamma ,\unicode{x3bb} )$ that runs in time $\mathrm {poly}((1+\epsilon ^{-1})\lvert \Gamma /G \rvert )$, where $\unicode{x3bb} _c(\Delta )$ denotes the critical activity on the $\Delta $-regular tree. In addition, if G has a finite index linearly ordered subgroup such that its algebraic past can be decided in exponential time, we show that the algorithm can be chosen to be deterministic. However, we observe that if $\|\unicode{x3bb} \|_\infty> \unicode{x3bb} _c(\Delta )$, there is no efficient approximation scheme, unless $\mathrm {NP} = \mathrm {RP}$. This recovers the computational phase transition for the partition function of the hardcore model on finite graphs and provides an extension to the infinite setting. As an application in symbolic dynamics, we use these results to develop efficient approximation algorithms for the topological entropy of subshifts of finite type with enough safe symbols, we obtain a representation formula of pressure in terms of random trees of self-avoiding walks, and we provide new conditions for the uniqueness of the measure of maximal entropy based on the connective constant of a particular associated graph.
We prove that for a vast class of random walks on a compactly generated group, the exponential growth of convolutions of a probability density function along almost every sample path is bounded by the growth of the group. As an application, we show that the almost sure and $L^1$ convergences of the Shannon–McMillan–Breiman theorem hold for compactly supported random walks on compactly generated groups with subexponential growth.