We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
By employing the external Kasparov product, in [18], Hawkins, Skalski, White, and Zacharias constructed spectral triples on crossed product C$^\ast $-algebras by equicontinuous actions of discrete groups. They further raised the question for whether their construction turns the respective crossed product into a compact quantum metric space in the sense of Rieffel. By introducing the concept of groups separated with respect to a given length function, we give an affirmative answer in the case of virtually Abelian groups equipped with certain orbit metric length functions. We further complement our results with a discussion of natural examples such as generalized Bunce-Deddens algebras and higher-dimensional noncommutative tori.
Let G be a compact quantum group. We show that given a G-equivariant $\textrm {C}^*$-correspondence E, the Pimsner algebra $\mathcal {O}_E$ can be naturally made into a G-$\textrm {C}^*$-algebra. We also provide sufficient conditions under which it is guaranteed that a G-action on the Pimsner algebra $\mathcal {O}_E$ arises in this way, in a suitable precise sense. When G is of Kac type, a KMS state on the Pimsner algebra, arising from a quasi-free dynamics, is G-equivariant if and only if the tracial state obtained from restricting it to the coefficient algebra is G-equivariant, under a natural condition. We apply these results to the situation when the $\textrm {C}^*$-correspondence is obtained from a finite, directed graph and draw various conclusions on the quantum automorphism groups of such graphs, both in the sense of Banica and Bichon.
Orthomodular logic is a weakening of quantum logic in the sense of Birkhoff and von Neumann. Orthomodular logic is shown to be a nonlinear noncommutative logic. Sequents are given a physically motivated semantics that is consistent with exactly one semantics for propositional formulas that use negation, conjunction, and implication. In particular, implication must be interpreted as the Sasaki arrow, which satisfies the deduction theorem in this logic. As an application, this deductive system is extended to two systems of predicate logic: the first is sound for Takeuti’s quantum set theory, and the second is sound for a variant of Weaver’s quantum logic.
We establish a theory of noncommutative (NC) functions on a class of von Neumann algebras with a particular direct sum property, e.g.,
$B({\mathcal H})$
. In contrast to the theory’s origins, we do not rely on appealing to results from the matricial case. We prove that the
$k{\mathrm {th}}$
directional derivative of any NC function at a scalar point is a k-linear homogeneous polynomial in its directions. Consequences include the fact that NC functions defined on domains containing scalar points can be uniformly approximated by free polynomials as well as realization formulas for NC functions bounded on particular sets, e.g., the NC polydisk and NC row ball.
We study the invariance of KMS states on graph $C^{\ast }$-algebras coming from strongly connected and circulant graphs under the classical and quantum symmetry of the graphs. We show that the unique KMS state for strongly connected graphs is invariant under the quantum automorphism group of the graph. For circulant graphs, it is shown that the action of classical and quantum automorphism groups preserves only one of the KMS states occurring at the critical inverse temperature. We also give an example of a graph $C^{\ast }$-algebra having more than one KMS state such that all of them are invariant under the action of classical automorphism group of the graph, but there is a unique KMS state which is invariant under the action of quantum automorphism group of the graph.
In this paper, we prove the equivalence between logarithmic Sobolev inequality and hypercontractivity of a class of quantum Markov semigroup and its associated Dirichlet form based on a probability gage space.
We provide a detailed study of actions of the integers on compact quantum metric spaces, which includes general criteria ensuring that the associated crossed product algebra is again a compact quantum metric space in a natural way. Moreover, we provide a flexible set of assumptions ensuring that a continuous family of $\ast$-automorphisms of a compact quantum metric space yields a field of crossed product algebras which varies continuously in Rieffel’s quantum Gromov–Hausdorff distance. Finally, we show how our results apply to continuous families of Lip-isometric actions on compact quantum metric spaces and to families of diffeomorphisms of compact Riemannian manifolds which vary continuously in the Whitney $C^{1}$-topology.
Given a unital inductive limit of C*-algebras for which each C*-algebra of the inductive sequence comes equipped with a Rieffel compact quantum metric, we produce sufficient conditions to build a compact quantum metric on the inductive limit from the quantum metrics on the inductive sequence by utilizing the completeness of the dual Gromov–Hausdorff propinquity of Latrémolière on compact quantum metric spaces. This allows us to place new quantum metrics on all unital approximately finite-dimensional (AF) algebras that extend our previous work with Latrémolière on unital AF algebras with faithful tracial state. As a consequence, we produce a continuous image of the entire Fell topology on the ideal space of any unital AF algebra in the dual Gromov–Hausdorff propinquity topology.
Let $\mathbb{G}$ be a locally compact quantum group and let $I$ be a closed ideal of $L^{1}(\mathbb{G})$ with $y|_{I}\neq 0$ for some $y\in \text{sp}(L^{1}(\mathbb{G}))$. In this paper, we give a characterization for compactness of $\mathbb{G}$ in terms of the existence of a weakly compact left or right multiplier $T$ on $I$ with $T(f)(y|_{I})\neq 0$ for some $f\in I$. Using this, we prove that $I$ is an ideal in its second dual if and only if $\mathbb{G}$ is compact. We also study Arens regularity of $I$ whenever it has a bounded left approximate identity. Finally, we obtain some characterizations for amenability of $\mathbb{G}$ in terms of the existence of some $I$-module homomorphisms on $I^{\ast \ast }$ and on $I^{\ast }$.
We answer a question of Skalski and Sołan (2016) about inner faithfulness of the Curran’s map of extending a quantum increasing sequence to a quantum permutation. Roughly speaking, we find a inductive setting in which the inner faithfulness of Curran’s map can be boiled down to inner faithfulness of similar map for smaller algebras and then rely on inductive generation result for quantum permutation groups of Brannan, Chirvasitu and Freslon (2018).
Kaplansky introduced the notions of CCR and GCR $C^{\ast }$-algebras, because they have a tractable representation theory. Many years later, he introduced the notions of CCR and GCR rings. In this paper we characterize when the algebra of an ample groupoid over a field is CCR and GCR. The results turn out to be exact analogues of the corresponding characterization of locally compact groupoids with CCR and GCR $C^{\ast }$-algebras. As a consequence, we classify the CCR and GCR Leavitt path algebras.
We prove simplicity of all intermediate $C^{\ast }$-algebras $C_{r}^{\ast }(\unicode[STIX]{x1D6E4})\subseteq {\mathcal{B}}\subseteq \unicode[STIX]{x1D6E4}\ltimes _{r}C(X)$ in the case of minimal actions of $C^{\ast }$-simple groups $\unicode[STIX]{x1D6E4}$ on compact spaces $X$. For this, we use the notion of stationary states, recently introduced by Hartman and Kalantar [Stationary $C^{\ast }$-dynamical systems. Preprint, 2017, arXiv:1712.10133]. We show that the Powers’ averaging property holds for the reduced crossed product $\unicode[STIX]{x1D6E4}\ltimes _{r}{\mathcal{A}}$ for any action $\unicode[STIX]{x1D6E4}\curvearrowright {\mathcal{A}}$ of a $C^{\ast }$-simple group $\unicode[STIX]{x1D6E4}$ on a unital $C^{\ast }$-algebra ${\mathcal{A}}$, and use it to prove a one-to-one correspondence between stationary states on ${\mathcal{A}}$ and those on $\unicode[STIX]{x1D6E4}\ltimes _{r}{\mathcal{A}}$.
The modular Gromov–Hausdorff propinquity is a distance on classes of modules endowed with quantum metric information, in the form of a metric form of a connection and a left Hilbert module structure. This paper proves that the family of Heisenberg modules over quantum two tori, when endowed with their canonical connections, form a family of metrized quantum vector bundles, as a first step in proving that Heisenberg modules form a continuous family for the modular Gromov–Hausdorff propinquity.
In this paper, we revisit the theory of induced representations in the setting of locally compact quantum groups. In the case of induction from open quantum subgroups, we show that constructions of Kustermans and Vaes are equivalent to the classical, and much simpler, construction of Rieffel. We also prove in general setting the continuity of induction in the sense of Vaes with respect to weak containment.
Associated with any closed quantum subgroup $G\,\subset \,U_{N}^{+}$ and any index set $I\,\subset \,\{1,\,.\,.\,.\,,\,N\}$ is a certain homogeneous space ${{X}_{G,I}}\subset S_{\mathbb{C},+}^{N-1},$ called an affine homogeneous space. Using Tannakian duality methods, we discuss the abstract axiomatization of the algebraic manifolds $X\subset S_{\mathbb{C},+}^{N-1}$ that can appear in this way.
Motivated by a question of A. Skalski and P. M. Sołtan (2016) about inner faithfulness of S. Curran’s map of extending a quantum increasing sequence to a quantum permutation, we revisit the results and techniques of T. Banica and J. Bichon (2009) and study some group-theoretic properties of the quantum permutation group on points. This enables us not only to answer the aforementioned question in the positive for the case where $n\,=\,4,\,k\,=\,2$, but also to classify the automorphisms of $S_{4}^{+}$, describe all the embeddings ${{O}_{-1}}(2)\,\subset \,S_{4}^{+}$ and show that all the copies of ${{O}_{-1}}(2)$ inside $S_{4}^{+}$are conjugate. We then use these results to show that the converse to the criterion we applied to answer the aforementioned question is not valid.
We prove two results on the tube algebras of rigid C*-tensor categories. The first is that the tube algebra of the representation category of a compact quantum group G is a full corner of the Drinfeld double of G. As an application, we obtain some information on the structure of the tube algebras of the Temperley–Lieb categories 𝒯ℒ(d) for d > 2. The second result is that the tube algebras of weakly Morita equivalent C*-tensor categories are strongly Morita equivalent. The corresponding linking algebra is described as the tube algebra of the 2-category defining the Morita context.
Building on our previous work, we study the non-relative homology of quantum group convolution algebras. Our main result establishes the equivalence of amenability of a locally compact quantum group $\mathbb{G}$ and 1-injectivity of ${{L}^{\infty }}\left( \widehat{\mathbb{G}} \right)$ as an operator ${{L}^{1}}\left( \widehat{\mathbb{G}} \right)$-module. In particular, a locally compact group $G$ is amenable if and only if its group von Neumann algebra $\text{VN}\left( G \right)$ is 1-injective as an operator module over the Fourier algebra $A\left( G \right)$. As an application, we provide a decomposability result for completely bounded ${{L}^{1}}\left( \widehat{\mathbb{G}} \right)$-module maps on ${{L}^{\infty }}\left( \widehat{\mathbb{G}} \right)$, and give a simplified proof that amenable discrete quantum groups have co-amenable compact duals, which avoids the use of modular theory and the Powers-Størmer inequality, suggesting that our homological techniques may yield a new approach to the open problem of duality between amenability and co-amenability.
We characterize two important notions of amenability and compactness of a locally compact quantum group $\mathbb{G}$ in terms of certain homological properties. For this, we show that $\mathbb{G}$ is character amenable if and only if it is both amenable and co-amenable. We finally apply our results to Arens regularity problems of the quantum group algebra ${{L}^{1}}\left( \mathbb{G} \right)$. In particular, we improve an interesting result by Hu, Neufang, and Ruan.
The notion of positive-definite functions over locally compact quantum groups was recently introduced and studied by Daws and Salmi. Based on this work, we generalize various well-known results about positive-definite functions over groups to the quantum framework. Among these are theorems on “square roots” of positive-definite functions, comparison of various topologies, positive-definite measures and characterizations of amenability, and the separation property with respect to compact quantum subgroups.