The gradient of the fluid stresses exerted on curved boundaries, conventionally computed in terms of directional derivatives of a tensor, is here analyzed by using the notion of intrinsic derivative which represents the geometrically appropriate tool for measuring tensor variations projected on curved surfaces. Relevant differences in the two approaches are found by using the classical Stokes analytical solution for the slow motion of a fluid over a fixed sphere and a numerically generated three dimensional dynamical scenario. Implications for theoretical fluid dynamics and for applied sciences are finally discussed.