We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
where ɛ is apositive parameter, $0 \lt s \lt 1$, $2 \leqslant p \lt q \lt \min\{2p, N / s\}$, $0 \lt \mu \lt sp$, $(- \Delta)_t^s$$(t \in \left\{p,q\right\})$ is the fractional t-Laplace operator, the reaction term $f : \mathbb{R} \mapsto \mathbb{R}$ is continuous, and the potential $V \in C (\mathbb{R}^N , \mathbb{R})$ satisfying a local condition. Using a variational approach and topological tools (the non-standard C1-Nehari manifold analysis and the abstract category theory), multiplicity of positive solutions and concentration properties for the above problem are established. Our results extend and complement some previous contributions related to double phase variational integrals.
We prove an extension of the homology version of the Hofer–Zehnder conjecture proved by Shelukhin to the weighted projective spaces which are symplectic orbifolds. In particular, we prove that if the number of fixed points counted with their isotropy order as multiplicity of a non-degenerate Hamiltonian diffeomorphism of such a space is larger than the minimum number possible, then there are infinitely many periodic points.
We study the multiplicity and concentration of complex-valued solutions for a fractional magnetic Schrödinger equation involving a scalar continuous electric potential satisfying a local condition and a continuous nonlinearity with subcritical growth. The main results are obtained by applying a penalization technique, generalized Nehari manifold method and Ljusternik–Schnirelman theory. We also prove a Kato's inequality for the fractional magnetic Laplacian which we believe to be useful in the study of other fractional magnetic problems.
This paper is devoted to the study of fractional Schrödinger-Poisson type equations with magnetic field of the type
$$\varepsilon^{2s}(-\Delta)_{A/\varepsilon}^{s}u + V(x)u + {\rm e}^{-2t}(\vert x \vert^{2t-3} \ast \vert u\vert ^{2})u = f(\vert u \vert^{2})u \quad \hbox{in} \ \open{R}^{3},$$
where ε > 0 is a parameter, s, t ∈ (0, 1) are such that 2s+2t>3, A:ℝ3 → ℝ3 is a smooth magnetic potential, (−Δ)As is the fractional magnetic Laplacian, V:ℝ3 → ℝ is a continuous electric potential and f:ℝ → ℝ is a C1 subcritical nonlinear term. Using variational methods, we obtain the existence, multiplicity and concentration of nontrivial solutions for e > 0 small enough.
In this paper, we study the existence and multiplicity of solutions for Kirchhoff-type superlinear problems involving non-local integro-differential operators. As a particular case, we consider the following Kirchhoff-type fractional Laplace equation:
where ( − Δ)s is the fractional Laplace operator, s ∈ (0, 1), N > 2s, Ω is an open bounded subset of ℝN with smooth boundary ∂Ω, $M:{\open R}_0^ + \to {\open R}^ + $ is a continuous function satisfying certain assumptions, and f(x, u) is superlinear at infinity. By computing the critical groups at zero and at infinity, we obtain the existence of non-trivial solutions for the above problem via Morse theory. To the best of our knowledge, our results are new in the study of Kirchhoff–type Laplacian problems.
Let $Q$ be a closed manifold admitting a locally free action of a compact Lie group $G$. In this paper, we study the properties of geodesic flows on $Q$ given by suitable G-invariant Riemannian metrics. In particular, we will be interested in the existence of geodesics that are closed up to the action of some element in the group $G$, since they project to closed magnetic geodesics on the quotient orbifold $Q/G$.
We consider the existence of normalized solutions in H1(ℝN) × H1(ℝN) for systems of nonlinear Schr¨odinger equations, which appear in models for binary mixtures of ultracold quantum gases. Making a solitary wave ansatz, one is led to coupled systems of elliptic equations of the form
and we are looking for solutions satisfying
where a1> 0 and a2> 0 are prescribed. In the system, λ1 and λ2 are unknown and will appear as Lagrange multipliers. We treat the case of homogeneous nonlinearities, i.e. , with positive constants β, μi, pi, ri. The exponents are Sobolev subcritical but may be L2-supercritical. Our main result deals with the case in which in dimensions 2 ≤ N ≤ 4. We also consider the cases in which all of these numbers are less than 2 + 4/N or all are bigger than 2 + 4/N.
where λ is a positive parameter and f has exponential critical growth. We first establish the existence of a non-zero weak solution. Then, by assuming that f is odd, we prove that the number of solutions increases when the parameter λ becomes large. In the proofs we apply variational methods in a suitable weighted Sobolev space consisting of functions with rapid decay at infinity.
In this paper we are concerned with a class of p(x)-Kirchhoff equation where the non-linearity has non-standard growth and contains a bi-non-local term. We prove, by using variational methods (Mountain Pass Theorem and Ekeland Variational Principle), several results on the existence of positive solutions.
We consider a nonlinear periodic problem driven by the scalar p-Laplacian and with a reaction term which exhibits a (p – 1)-superlinear growth near ±∞ but need not satisfy the Ambrosetti-Rabinowitz condition. Combining critical point theory with Morse theory we prove an existence theorem. Then, using variational methods together with truncation techniques, we prove a multiplicity theorem establishing the existence of at least five non-trivial solutions, with precise sign information for all of them (two positive solutions, two negative solutions and a nodal (sign changing) solution).
We consider a nonlinear periodic problem driven by a nonlinear nonhomogeneous differential operator and a Carathéodory reaction term $f\left( t,\,x \right)$ that exhibits a $\left( p\,-\,1 \right)$-superlinear growth in $x\,\in \,\mathbb{R}$ near $\pm \infty $ and near zero. A special case of the differential operator is the scalar $p$-Laplacian. Using a combination of variational methods based on the critical point theory with Morse theory (critical groups), we show that the problem has three nontrivial solutions, two of which have constant sign (one positive, the other negative).
We study the eigenvalue problem = λ|u|q(x)−2u in Ω, u = 0 on ∂Ω, where Ω is a bounded domain in ℝN with smooth boundary ∂Ω, λ is a positive real number, and p1,⋅ ⋅ ⋅, pN, q are continuous functions satisfying the following conditions: 2 ≤ pi(x) < N, 1 < q(x) for all x ∈ Ω, i ∈ {1,. . .,N}; there exist j, k ∈ {1,. . .,N}, j ≠ k, such that pj ≡ q in Ω, q is independent of xj and maxΩq < minΩpk. The main result of this paper establishes the existence of two positive constants λ0 and λ1 with λ0 ≤ λ1 such that every λ ∈(λ1, ∞) is an eigenvalue, while no λ ∈ (0, λ0) can be an eigenvalue of the above problem.
Using variational arguments we study the non-existence and multiplicity of non-negative solutions for a class equations of the form
where Ω is a bounded domain in N, N ≧ 3, f is a sign-changing Carathéodory function on Ω × [0, +∞) and λ is a positive parameter.
We count how many ‘different’ Morse functions exist on the 2-sphere. There are several ways of declaring that two Morse functions f and g are ‘indistinguishable’ but we concentrate only on two natural equivalence relations: homological (when the regular sublevel sets f and g have identical Betti numbers) and geometric (when f is obtained from g via global, orientation-preserving changes of coordinates on S2 and ℝ). The count of homological classes is reduced to a count of lattice paths confined to the first quadrant. The count of geometric classes is reduced to a count of certain labeled trees, which is encoded by certain elliptic integrals.
In this paper, some min–max theorems for even and C1 functionals established by Ghoussoub are extended to the case of functionals that are the sum of a locally Lipschitz continuous, even term and a convex, proper, lower semi-continuous, even function. A class of non-smooth functionals admitting an unbounded sequence of critical values is also pointed out.
In this paper we study a non-linear elliptic equation involving p(x)-growth conditions and satisfying a Neumann boundary condition on a bounded domain. For that equation we establish the existence of two solutions using as a main tool an abstract linking argument due to Brézis and Nirenberg.
We consider a nonlinear Dirichlet problem driven by the p(ċ)-Laplacian. Using variational methods based on the critical point theory, together with suitable truncation techniques and the use of upper-lower solutions and of critical groups, we show that the problem has at least three nontrivial solutions, two of which have constant sign (one positive, the other negative). The hypotheses on the nonlinearity incorporates in our framework of analysis, both coercive and noncoercive problems.
We study a partial differential equation on a bounded domain $\Omega\subset\mathbb{R}^N$ with a $p(x)$-growth condition in the divergence operator and we establish the existence of at least two nontrivial weak solutions in the generalized Sobolev space $W_0^{1,p(x)}(\Omega)$. Such equations have been derived as models of several physical phenomena. Our proofs rely essentially on critical point theory combined with corresponding variational techniques.