We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
This paper studies a novel Brownian functional defined as the supremum of a weighted average of the running Brownian range and its running reversal from extrema on the unit interval. We derive the Laplace transform for the squared reciprocal of this functional, which leads to explicit moment expressions that are new to the literature. We show that the proposed Brownian functional can be used to estimate the spot volatility of financial returns based on high-frequency price observations.
We first introduce the concept of weak random periodic solutions of random dynamical systems. Then, we discuss the existence of such periodic solutions. Further, we introduce the definition of weak random periodic measures and study their relationship with weak random periodic solutions. In particular, we establish the existence of invariant measures of random dynamical systems by virtue of their weak random periodic solutions. We use concrete examples to illustrate the weak random periodic phenomena of dynamical systems induced by random and stochastic differential equations.
We consider solutions of Lévy-driven stochastic differential equations of the form $\textrm{d} X_t=\sigma(X_{t-})\textrm{d} L_t$, $X_0=x$, where the function $\sigma$ is twice continuously differentiable and the driving Lévy process $L=(L_t)_{t\geq0}$ is either vector or matrix valued. While the almost sure short-time behavior of Lévy processes is well known and can be characterized in terms of the characteristic triplet, there is no complete characterization of the behavior of the solution X. Using methods from stochastic calculus, we derive limiting results for stochastic integrals of the form $t^{-p}\int_{0+}^t\sigma(X_{t-})\,\textrm{d} L_t$ to show that the behavior of the quantity $t^{-p}(X_t-X_0)$ for $t\downarrow0$ almost surely reflects the behavior of $t^{-p}L_t$. Generalizing $t^{{\kern1pt}p}$ to a suitable function $f\colon[0,\infty)\rightarrow\mathbb{R}$ then yields a tool to derive explicit law of the iterated logarithm type results for the solution from the behavior of the driving Lévy process.
We present a reflection principle for a wide class of symmetric random motions with finite velocities. We propose a deterministic argument which is then applied to trajectories of stochastic processes. In the case of symmetric correlated random walks and the symmetric telegraph process, we provide a probabilistic result recalling the classical reflection principle for Brownian motion, but where the initial velocity has a crucial role. In the case of the telegraph process we also present some consequences which lead to further reflection-type characteristics of the motion.
For the gambler’s ruin problem with two players starting with the same amount of money, we show the playing time is stochastically maximized when the games are fair.
Drawdown/regret times feature prominently in optimal stopping problems, in statistics (CUSUM procedure), and in mathematical finance (Russian options). Recently it was discovered that a first passage theory with more general drawdown times, which generalize classic ruin times, may be explicitly developed for spectrally negative Lévy processes [9, 20]. In this paper we further examine the general drawdown-related quantities in the (upward skip-free) time-homogeneous Markov process, and then in its (general) tax process by noticing the pathwise connection between general drawdown and the tax process.
We study shot noise processes with cluster arrivals, in which entities in each cluster may experience random delays (possibly correlated), and noises within each cluster may be correlated. We prove functional limit theorems for the process in the large-intensity asymptotic regime, where the arrival rate gets large while the shot shape function, cluster sizes, delays, and noises are unscaled. In the functional central limit theorem, the limit process is a continuous Gaussian process (assuming the arrival process satisfies a functional central limit theorem with a Brownian motion limit). We discuss the impact of the dependence among the random delays and among the noises within each cluster using several examples of dependent structures. We also study infinite-server queues with cluster/batch arrivals where customers in each batch may experience random delays before receiving service, with similar dependence structures.
We consider a space-time random field on ${{\mathbb{R}^d} \times {\mathbb{R}}}$ given as an integral of a kernel function with respect to a Lévy basis with a convolution equivalent Lévy measure. The field obeys causality in time and is thereby not continuous along the time axis. For a large class of such random fields we study the tail behaviour of certain functionals of the field. It turns out that the tail is asymptotically equivalent to the right tail of the underlying Lévy measure. Particular examples are the asymptotic probability that there is a time point and a rotation of a spatial object with fixed radius, in which the field exceeds the level x, and that there is a time interval and a rotation of a spatial object with fixed radius, in which the average of the field exceeds the level x.
We establish a fundamental property of bivariate Pareto records for independent observations uniformly distributed in the unit square. We prove that the asymptotic conditional distribution of the number of records broken by an observation given that the observation sets a record is Geometric with parameter 1/2.
In this paper, we solve exit problems for a one-sided Markov additive process (MAP) which is exponentially killed with a bivariate killing intensity
$\omega(\cdot,\cdot)$
dependent on the present level of the process and the current state of the environment. Moreover, we analyze the respective resolvents. All identities are expressed in terms of new generalizations of classical scale matrices for MAPs. We also remark on a number of applications of the obtained identities to (controlled) insurance risk processes. In particular, we show that our results can be applied to the Omega model, where bankruptcy takes place at rate
$\omega(\cdot,\cdot)$
when the surplus process becomes negative. Finally, we consider Markov-modulated Brownian motion (MMBM) as a special case and present analytical and numerical results for a particular choice of piecewise intensity function
$\omega(\cdot,\cdot)$
.
We introduce and study the notion of sure profits via flash strategies, consisting of a high-frequency limit of buy-and-hold trading strategies. In a fully general setting, without imposing any semimartingale restriction, we prove that there are no sure profits via flash strategies if and only if asset prices do not exhibit predictable jumps. This result relies on the general theory of processes and provides the most general formulation of the well-known fact that, in an arbitrage-free financial market, asset prices (including dividends) should not exhibit jumps of a predictable direction or magnitude at predictable times. We furthermore show that any price process is always right-continuous in the absence of sure profits. Our results are robust under small transaction costs and imply that, under minimal assumptions, price changes occurring at scheduled dates should only be due to unanticipated information releases.
Extreme value theory for random vectors and stochastic processes with continuous trajectories is usually formulated for random objects where the univariate marginal distributions are identical. In the spirit of Sklar's theorem from copula theory, such marginal standardization is carried out by the pointwise probability integral transform. Certain situations, however, call for stochastic models whose trajectories are not continuous but merely upper semicontinuous (USC). Unfortunately, the pointwise application of the probability integral transform to a USC process does not, in general, preserve the upper semicontinuity of the trajectories. In this paper we give sufficient conditions to enable marginal standardization of USC processes and we state a partial extension of Sklar's theorem for USC processes. We specialize the results to max-stable processes whose marginal distributions and normalizing sequences are allowed to vary with the coordinate.
Modern processing networks often consist of heterogeneous servers with widely varying capabilities, and process job flows with complex structure and requirements. A major challenge in designing efficient scheduling policies in these networks is the lack of reliable estimates of system parameters, and an attractive approach for addressing this challenge is to design robust policies, i.e. policies that do not use system parameters such as arrival and/or service rates for making scheduling decisions. In this paper we propose a general framework for the design of robust policies. The main technical novelty is the use of a stochastic gradient projection method that reacts to queue-length changes in order to find a balanced allocation of service resources to incoming tasks. We illustrate our approach on two broad classes of processing systems, namely the flexible fork-join networks and the flexible queueing networks, and prove the rate stability of our proposed policies for these networks under nonrestrictive assumptions.
We consider the stability of robust scheduling policies for multiclass queueing networks. These are open networks with arbitrary routeing matrix and several disjoint groups of queues in which at most one queue can be served at a time. The arrival and potential service processes and routeing decisions at the queues are independent, stationary, and ergodic. A scheduling policy is called robust if it does not depend on the arrival and service rates nor on the routeing probabilities. A policy is called throughput-optimal if it makes the system stable whenever the parameters are such that the system can be stable. We propose two robust policies: longest-queue scheduling and a new policy called longest-dominating-queue scheduling. We show that longest-queue scheduling is throughput-optimal for two groups of two queues. We also prove the throughput-optimality of longest-dominating-queue scheduling when the network topology is acyclic, for an arbitrary number of groups and queues.
We establish an integral test on the lower escape rate of symmetric jump-diffusion processes generated by regular Dirichlet forms. Using this test, we can find the speed of particles escaping to infinity. We apply this test to symmetric jump processes of variable order. We also derive the upper and lower escape rates of time-changed processes by using those of underlying processes.
We give an account of the characteristics that result from reflecting a drifting local martingale (i.e. the sum of a local martingale and a multiple of its quadratic variation process) in 0 and b > 0. We present conditions which guarantee the existence of finite moments of what is required to keep the reflected process within its boundaries. Also, we derive an associated law of large numbers and a central limit theorem which apply when the input is continuous. Similar results for integrals of the paths of the reflected process are also presented. These results are in close agreement to what has previously been shown for Brownian motion.
The drawdown process of a one-dimensional regular diffusion process X is given by X reflected at its running maximum. The drawup process is given by X reflected at its running minimum. We calculate the probability that a drawdown precedes a drawup in an exponential time-horizon. We then study the law of the occupation times of the drawdown process and the drawup process. These results are applied to address problems in risk analysis and for option pricing of the drawdown process. Finally, we present examples of Brownian motion with drift and three-dimensional Bessel processes, where we prove an identity in law.
We derive multivariate moment generating functions for the conditional and stationary distributions of a discrete sample path of n observations of a square-root diffusion (CIR) process, X(t). For any fixed vector of observation times t1,…,tn, we find the conditional joint distribution of (X(t1),…,X(tn)) is a multivariate noncentral chi-squared distribution and the stationary joint distribution is a Krishnamoorthy-Parthasarathy multivariate gamma distribution. Multivariate cumulants of the stationary distribution have a simple and computationally tractable expression. We also obtain the moment generating function for the increment X(t + δ) - X(t), and show that the increment is equivalent in distribution to a scaled difference of two independent draws from a gamma distribution.
A lumping of a Markov chain is a coordinatewise projection of the chain. We characterise the entropy rate preservation of a lumping of an aperiodic and irreducible Markov chain on a finite state space by the random growth rate of the cardinality of the realisable preimage of a finite-length trajectory of the lumped chain and by the information needed to reconstruct original trajectories from their lumped images. Both are purely combinatorial criteria, depending only on the transition graph of the Markov chain and the lumping function. A lumping is strongly k-lumpable, if and only if the lumped process is a kth-order Markov chain for each starting distribution of the original Markov chain. We characterise strong k-lumpability via tightness of stationary entropic bounds. In the sparse setting, we give sufficient conditions on the lumping to both preserve the entropy rate and be strongly k-lumpable.
We consider a two-node fluid network with batch arrivals of random size having a heavy-tailed distribution. We are interested in the tail asymptotics for the stationary distribution of a two-dimensional workload process. Tail asymptotics have been well studied for two-dimensional reflecting processes where jumps have either a bounded or an unbounded light-tailed distribution. However, the presence of heavy tails totally changes these asymptotics. Here we focus on the case of strong stability where both nodes release fluid at sufficiently high speeds to minimise their mutual influence. We show that, as in the one-dimensional case, big jumps provide the main cause for workloads to become large, but now they can have multidimensional features. We first find the weak tail asymptotics of an arbitrary directional marginal of the stationary distribution at Poisson arrival epochs. In this analysis, decomposition formulae for the stationary distribution play a key role. Then we employ sample-path arguments to find the exact tail asymptotics of a directional marginal at renewal arrival epochs assuming one-dimensional batch arrivals.