We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We derive large-sample and other limiting distributions of components of the allele frequency spectrum vector, $\mathbf{M}_n$, joint with the number of alleles, $K_n$, from a sample of n genes. Models analysed include those constructed from gamma and $\alpha$-stable subordinators by Kingman (thus including the Ewens model), the two-parameter extension by Pitman and Yor, and a two-parameter version constructed by omitting large jumps from an $\alpha$-stable subordinator. In each case the limiting distribution of a finite number of components of $\mathbf{M}_n$ is derived, joint with $K_n$. New results include that in the Poisson–Dirichlet case, $\mathbf{M}_n$ and $K_n$ are asymptotically independent after centering and norming for $K_n$, and it is notable, especially for statistical applications, that in other cases the limiting distribution of a finite number of components of $\mathbf{M}_n$, after centering and an unusual $n^{\alpha/2}$ norming, conditional on that of $K_n$, is normal.
We use Stein’s method to establish the rates of normal approximation in terms of the total variation distance for a large class of sums of score functions of samples arising from random events driven by a marked Poisson point process on $\mathbb{R}^d$. As in the study under the weaker Kolmogorov distance, the score functions are assumed to satisfy stabilisation and moment conditions. At the cost of an additional non-singularity condition, we show that the rates are in line with those under the Kolmogorov distance. We demonstrate the use of the theorems in four applications: Voronoi tessellations, k-nearest-neighbours graphs, timber volume, and maximal layers.
We study fluctuations of the error term for the number of integer lattice points lying inside a three-dimensional Cygan–Korányi ball of large radius. We prove that the error term, suitably normalized, has a limiting value distribution which is absolutely continuous, and we provide estimates for the decay rate of the corresponding density on the real line. In addition, we establish the existence of all moments for the normalized error term, and we prove that these are given by the moments of the corresponding density.
We make the first steps towards generalising the theory of stochastic block models, in the sparse regime, towards a model where the discrete community structure is replaced by an underlying geometry. We consider a geometric random graph over a homogeneous metric space where the probability of two vertices to be connected is an arbitrary function of the distance. We give sufficient conditions under which the locations can be recovered (up to an isomorphism of the space) in the sparse regime. Moreover, we define a geometric counterpart of the model of flow of information on trees, due to Mossel and Peres, in which one considers a branching random walk on a sphere and the goal is to recover the location of the root based on the locations of leaves. We give some sufficient conditions for percolation and for non-percolation of information in this model.
We derive the large-sample distribution of the number of species in a version of Kingman’s Poisson–Dirichlet model constructed from an
$\alpha$
-stable subordinator but with an underlying negative binomial process instead of a Poisson process. Thus it depends on parameters
$\alpha\in (0,1)$
from the subordinator and
$r>0$
from the negative binomial process. The large-sample distribution of the number of species is derived as sample size
$n\to\infty$
. An important component in the derivation is the introduction of a two-parameter version of the Dickman distribution, generalising the existing one-parameter version. Our analysis adds to the range of Poisson–Dirichlet-related distributions available for modeling purposes.
In this paper, we show that the numbers of t-stack sortable n-permutations with k − 1 descents satisfy central and local limit theorems for t = 1, 2, n − 1 and n − 2. This result, in particular, gives an affirmative answer to Shapiro's question about the asymptotic normality of the Narayana numbers.
We study the Cramér type moderate deviation for partial sums of random fields by applying the conjugate method. The results are applicable to the partial sums of linear random fields with short or long memory and to nonparametric regression with random field errors.
As an extension of a central limit theorem established by Svante Janson, we prove a Berry–Esseen inequality for a sum of independent and identically distributed random variables conditioned by a sum of independent and identically distributed integer-valued random variables.
We study the tail asymptotic of subexponential probability densities on the real line. Namely, we show that the n-fold convolution of a subexponential probability density on the real line is asymptotically equivalent to this density multiplied by n. We prove Kesten's bound, which gives a uniform in n estimate of the n-fold convolution by the tail of the density. We also introduce a class of regular subexponential functions and use it to find an analogue of Kesten's bound for functions on ℝd. The results are applied to the study of the fundamental solution to a nonlocal heat equation.
By extending the methods of Peligrad et al. (2014), we establish exact moderate and large deviation asymptotics for linear random fields with independent innovations. These results are useful for studying nonparametric regression with random field errors and strong limit theorems.
We consider the distribution of the age of an individual picked uniformly at random at some fixed time in a linear birth-and-death process. By exploiting a bijection between the birth-and-death tree and a contour process, we derive the cumulative distribution function for this distribution. In the critical and supercritical cases, we also give rates for the convergence in terms of the total variation and other metrics towards the appropriate exponential distribution.
The (conditional or unconditional) distribution of the continuous scan statistic in a one-dimensional Poisson process may be approximated by that of a discrete analogue via time discretization (to be referred to as the discrete approximation). Using a change of measure argument, we derive the first-order term of the discrete approximation which involves some functionals of the Poisson process. Richardson's extrapolation is then applied to yield a corrected (second-order) approximation. Numerical results are presented to compare various approximations.
We study the asymptotic behaviour of the maximum interpoint distance of random points in a d-dimensional ellipsoid with a unique major axis. Instead of investigating only a fixed number of n points as n tends to ∞, we consider the much more general setting in which the random points are the supports of appropriately defined Poisson processes. Our main result covers the case of uniformly distributed points.
In this paper we provide the basis for new methods of inference for max-stable processes ξ on general spaces that admit a certain incremental representation, which, in important cases, has a much simpler structure than the max-stable process itself. A corresponding peaks-over-threshold approach will incorporate all single events that are extreme in some sense and will therefore rely on a substantially larger amount of data in comparison to estimation procedures based on block maxima. Conditioning a process η in the max-domain of attraction of ξ on being extremal, several convergence results for the increments of η are proved. In a similar way, the shape functions of mixed moving maxima (M3) processes can be extracted from suitably conditioned single events η. Connecting the two approaches, transformation formulae for processes that admit both an incremental and an M3 representation are identified.
As the name suggests, the family of general error distributions has been used to model nonnormal errors in a variety of situations. In this article we show that the asymptotic distribution of linearly normalized partial maxima of random observations from the general error distributions is Gumbel when the parameter of these distributions lies in the interval (0, 1). Our result fills a gap in the literature. We also establish the corresponding density convergence, obtain an asymptotic distribution of the partial maxima under power normalization, and state and prove a strong law. We also study the asymptotic behaviour of observations near the partial maxima and the sum of such observations.
Using a characterizing equation for the beta distribution, Stein's method is applied to obtain bounds of the optimal order for the Wasserstein distance between the distribution of the scaled number of white balls drawn from a Pólya-Eggenberger urn and its limiting beta distribution. The bound is computed by making a direct comparison between characterizing operators of the target and the beta distribution, the former derived by extending Stein's density approach to discrete distributions. In addition, refinements are given to Döbler's (2012) result for the arcsine approximation for the fraction of time a simple random walk of even length spends positive, and so also to the distributions of its last return time to 0 and its first visit to its terminal point, by supplying explicit constants to the present Wasserstein bound and also demonstrating that its rate is of the optimal order.
We discuss tail behaviors, subexponentiality, and the extreme value distribution of logarithmic skew-normal random variables. With optimal normalized constants, the asymptotic expansion of the distribution of the normalized maximum of logarithmic skew-normal random variables is derived. We show that the convergence rate of the distribution of the normalized maximum to the Gumbel extreme value distribution is proportional to 1/(log n)1/2.
Dependence between coordinate extremes is a key factor in any multivariate risk assessment. Hence, it is of interest to know whether the components of a given multivariate random vector exhibit asymptotic independence or asymptotic dependence. In the latter case the structure of the asymptotic dependence has to be clarified. In the multivariate setting it is common to have an explicit form of the density rather than the distribution function. In this paper we therefore give criteria for asymptotic dependence in terms of the density. We consider distributions with light tails and restrict attention to continuous unimodal densities defined on the whole space or on an open convex cone. For simplicity, the density is assumed to be homothetic: all level sets have the same shape. Balkema and Nolde (2010) contains conditions on the shape which guarantee asymptotic independence. The situation for asymptotic dependence, treated in the present paper, is more delicate.
Foschini gave a lower bound for the channel capacity of an N-transmit M-receive antenna system in a Raleigh fading environment with independence at both transmitters and receivers. We show that this bound is approximately normal.
We investigate the asymptotic distribution of the number of exceedances among d identically distributed but not necessarily independent random variables (RVs) above a sequence of increasing thresholds, conditional on the assumption that there is at least one exceedance. Our results enable the computation of the fragility index, which represents the expected number of exceedances, given that there is at least one exceedance. Computed from the first d RVs of a strictly stationary sequence, we show that, under appropriate conditions, the reciprocal of the fragility index converges to the extremal index corresponding to the stationary sequence as d increases.