We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We study a class of two-variable polynomials called exact polynomials which contains $A$-polynomials of knot complements. The Mahler measure of these polynomials can be computed in terms of a volume function defined on the vanishing set of the polynomial. We prove that the local extrema of the volume function are on the two-dimensional torus and give a closed formula for the Mahler measure in terms of these extremal values. This formula shows that the Mahler measure of an irreducible and exact polynomial divided by $\pi$ is greater than the amplitude of the volume function. We also prove a K-theoretic criterion for a polynomial to be a factor of an $A$-polynomial and give a topological interpretation of its Mahler measure.
In this paper, we extend the definition of the $SL\left( 2,\,\mathbb{C} \right)$ Casson invariant to arbitrary knots $K$ in integral homology 3-spheres and relate it to the $m$-degree of the $\widehat{A}$-polynomial of $K$. We prove a product formula for the $\widehat{A}$-polynomial of the connected sum ${{K}_{1}}\#{{K}_{2}}$ of two knots in ${{S}^{3}}$ and deduce additivity of the $SL\left( 2,\,\mathbb{C} \right)$ Casson knot invariant under connected sums for a large class of knots in ${{S}^{3}}$. We also present an example of a nontrivial knot $K$ in ${{S}^{3}}$ with trivial $\widehat{A}$-polynomial and trivial $SL\left( 2,\,\mathbb{C} \right)$ Casson knot invariant, showing that neither of these invariants detect the unknot.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.