We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
The objective of this study was to assess the prospective association between diet quality, as well as a 6-year change in diet quality, and risk of incident CVD and diabetes in a community-based population.
Design:
We used Cox regression models to estimate the prospective association between diet quality, assessed using the Healthy Eating Index (HEI)-2015 and the Alternative HEI (AHEI)-2010 scores, as well as change in diet quality, and incident CVD and diabetes.
Setting:
The ARIC Study recruited 15 792 black and white men and women (45–64 years) from four US communities.
Participants:
We included 10 808 study participants who reported usual dietary intake via FFQ at visit 1 (1987–1989) and who had not developed CVD, diabetes, or cancer at baseline.
Results:
Overall, 3070 participants developed CVD (median follow-up of 26 years) and 3452 developed diabetes (median follow-up of 22 years) after visit 1. Higher diet score at the initial visit was associated with a significantly lower risk of CVD (HR per 10 % higher HEI-2015 diet quality score: 0·90 (95 % CI: 0·86, 0·95) and HR per 10 % higher AHEI-2010 diet quality score: 0·96 (95 % CI: 0·93, 0·99)). We did not observe a significant association between initial diet score and incident diabetes. There were no significant associations between change in diet score and CVD or diabetes risk in the overall study population.
Conclusions:
Higher diet quality assessed using HEI-2015 and AHEI-2010 was strongly associated with lower CVD risk but not diabetes risk within a middle-aged, community-based US population.
Review findings on the role of dietary patterns in preventing depression are inconsistent, possibly due to variation in assessment of dietary exposure and depression. We studied the association between dietary patterns and depressive symptoms in six population-based cohorts and meta-analysed the findings using a standardised approach that defined dietary exposure, depression assessment and covariates.
Methods
Included were cross-sectional data from 23 026 participants in six cohorts: InCHIANTI (Italy), LASA, NESDA, HELIUS (the Netherlands), ALSWH (Australia) and Whitehall II (UK). Analysis of incidence was based on three cohorts with repeated measures of depressive symptoms at 5–6 years of follow-up in 10 721 participants: Whitehall II, InCHIANTI, ALSWH. Three a priori dietary patterns, Mediterranean diet score (MDS), Alternative Healthy Eating Index (AHEI-2010), and the Dietary Approaches to Stop Hypertension (DASH) diet were investigated in relation to depressive symptoms. Analyses at the cohort-level adjusted for a fixed set of confounders, meta-analysis used a random-effects model.
Results
Cross-sectional and prospective analyses showed statistically significant inverse associations of the three dietary patterns with depressive symptoms (continuous and dichotomous). In cross-sectional analysis, the association of diet with depressive symptoms using a cut-off yielded an adjusted OR of 0.87 (95% confidence interval 0.84–0.91) for MDS, 0.93 (0.88–0.98) for AHEI-2010, and 0.94 (0.87–1.01) for DASH. Similar associations were observed prospectively: 0.88 (0.80–0.96) for MDS; 0.95 (0.84–1.06) for AHEI-2010; 0.90 (0.84–0.97) for DASH.
Conclusion
Population-scale observational evidence indicates that adults following a healthy dietary pattern have fewer depressive symptoms and lower risk of developing depressive symptoms.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.