We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
When intrathecally or epidurally administered, α2-adrenoceptor agonists produce potent antinociception by affecting the activity of primary afferent fibres and spinal cord neurons. Recent reports have indicated that in dorsal root ganglion neurons, tetrodotoxin-resistant Na+ channels play important roles in the conduction of nociceptive sensation. We therefore investigated the effects of α2-adrenoceptor agonists on tetrodotoxin-resistant Na+ currents.
Methods
Using the whole-cell patch-clamp technique, we recorded tetrodotoxin-resistant Na+ currents from rat dorsal root ganglion neurons.
Results
Both clonidine and dexmedetomidine reduced the peak amplitude of the tetrodotoxin-resistant Na+ current concentration- and use-dependently. The concentration required for a half-maximal effect was significantly lower for dexmedetomidine (58.0 ± 10.2 μmol) than for clonidine (257.2 ± 30.9 μmol) at holding potential −70 mV. The current inhibitions induced by these agonists were not prevented by 1 μmol yohimbine, an α2-adrenoceptor antagonist. Both clonidine and dexmedetomidine shifted the inactivation curve for the tetrodotoxin-resistant Na+ current in the hyperpolarizing direction. The combinations clonidine with lidocaine and dexmedetomidine with lidocaine produced an additive blockade-type interaction on the tetrodotoxin-resistant Na+ current.
Conclusions
The results suggest that a direct inhibition of tetrodotoxin-resistant Na+ channels may contribute to the antinociceptive effects of clonidine and dexmedetomidine when used as additives to regional anaesthesia.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.