We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Neurobehavioral decision profiles have often been neglected in chronic diseases despite their direct impact on major public health issues such as treatment adherence. This remains a major concern in diabetes, despite intensive efforts and public awareness initiatives regarding its complications. We hypothesized that high rates of low adherence are related to risk-taking profiles associated with decision-making phenotypes. If this hypothesis is correct, it should be possible to define these endophenotypes independently based both on dynamic measures of metabolic control (HbA1C) and multidimensional behavioral profiles.
Methods
In this study, 91 participants with early-stage type 1 diabetes fulfilled a battery of self-reported real-world risk behaviors and they performed an experimental task, the Balloon Analogue Risk Task (BART).
Results
K-means and two-step cluster analysis suggest a two-cluster solution providing information of distinct decision profiles (concerning multiple domains of risk-taking behavior) which almost perfectly match the biological partition, based on the division between stable or improving metabolic control (MC, N = 49) v. unstably high or deteriorating states (NoMC, N = 42). This surprising dichotomy of behavioral phenotypes predicted by the dynamics of HbA1C was further corroborated by standard statistical testing. Finally, the BART game enabled to identify groups differences in feedback learning and consequent behavioral choices under ambiguity, showing distinct group choice behavioral patterns.
Conclusions
These findings suggest that distinct biobehavioral endophenotypes can be related to the success of metabolic control. These findings also have strong implications for programs to improve patient adherence, directly addressing risk-taking profiles.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.