The tick-borne intracellular pathogen Anaplasma marginale (Rickettsiales: Anaplasmataceae) develops persistent infections in cattle and tick hosts. While erythrocytes appear to be the only site of infection in cattle, A. marginale undergoes a complex developmental cycle in ticks and transmission occurs via salivary glands during feeding. Many geographic isolates occur that vary in genotype, antigenic composition, morphology and infectivity for ticks. In this chapter we review recent research on the host–vector–pathogen interactions of A. marginale. Major surface proteins (MSPs) play a crucial role in the interaction of A. marginale with host cells. The MSP1a protein, which is an adhesin for bovine erythrocytes and tick cells, is differentially regulated and affects infection and transmission of A. marginale by Dermacentor spp. ticks. MSP2 undergoes antigenic variation and selection in cattle and ticks, and contributes to the maintenance of persistent infections. Phylogenetic studies of A. marginale geographic isolates using msp4 and msp1α provide information about the biogeography and evolution of A. marginale: msp1α genotypes evolve under positive selection pressure. Isolates of A. marginale are maintained by independent transmission events and a mechanism of infection exclusion in cattle and ticks allows for only the infection of one isolate per animal. Prospects for development of control strategies by use of pathogen and tick-derived antigens are discussed. The A. marginale/vector/host studies described herein could serve as a model for research on other tick-borne rickettsiae.