This paper deals with the numerical study of a nonlinear, strongly anisotropic heatequation. The use of standard schemes in this situation leads to poor results, due to thehigh anisotropy. An Asymptotic-Preserving method is introduced in this paper, which issecond-order accurate in both, temporal and spacial variables. The discretization in timeis done using an L-stable Runge−Kutta scheme. The convergence of the method is shown to beindependent of the anisotropy parameter , andthis for fixed coarse Cartesian grids and for variable anisotropy directions. The contextof this work are magnetically confined fusion plasmas.