We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Antiseizure medications (ASMs) have endocrine related side effects. Long term use of ASMs may result in menstrual irregularities, sexual dysfunction, anovulatory cycles, polycystic ovaries, and reduced fertility. Some ASMs also interfere with glucose and bone metabolism, as well as normal thyroid function. Other ASMs may result in syndrome of inappropriate ADH secretion (SIADH) and hyponatremia. Epilepsy patients treated with ASMs are at risk for bone loss and fractures. This chapter explores the endocrine and hormonal effects of antiseizure medications.
Patients with traumatic brain injury frequently develop epilepsy, cognitive dysfunction and behavioral imbalance. Understanding the interplay between antiseizure medications, mood and cognition is essential to any provider who cares for patients with TBI and seizures. Antiseizure medications can be classified into those that have low, moderate and high cognitive side effect profiles, and they can also be classified into medications that cause positive, intermediate and negative effects on mood. For example, Lamotrigine is a medication that both has low cognitive side effects and has positive effects on mood. But there is no drug without side effects, and each antiseizure medication has its own unique side effect profile. Choosing the antiseizure medication that will lead to the best outcomes for each individual patient requires evaluating the unique characteristics of each medication. Only with an understanding of the cognitive and behavioral effects of each medication is it possible to create a successful treatment regimen for each individual. This chapter will examine many antiseizure medications and their unique side effect profiles, with a focus on the cognitive and behavioral implications of each medication.
Caring for women with epilepsy (WWE) during pregnancy poses unique challenges. We conducted an audit of the care our epilepsy clinic provided to pregnant WWE.
Methods:
We performed a retrospective study on all pregnancies followed by an epileptologist at a Canadian tertiary care centre’s epilepsy clinic between January 2003 and March 2021. Among 81 pregnancies in 53 patients, 72 pregnancies in 50 patients were analyzed to determine patient-related, follow-up-related, antiseizure-medication-related, and child-related pregnancy characteristics. Univariate analyses were performed to explore if these characteristics were associated with disabling seizure occurrence during pregnancy.
Results:
Most pregnancies were intended (72%) and occurred in women who used folic acid pre-pregnancy (76%) and who followed recommended blood tests for antiseizure medication (ASM) levels (71%). In 49% of pregnancies, ASM dosage was modified; 53% of these modifications were made in response to ASM blood levels. Most often used ASMs were lamotrigine (43%), followed by carbamazepine (32%) and levetiracetam (13%). One child was born with a thyroglossal duct cyst; our congenital malformation rate was thus 2%. Disabling seizures occurred in 24% of pregnancies. Exploratory analyses suggested that disabling seizure occurrence during pregnancy was associated with younger patient age (p = 0.018), higher number of ASMs used during pregnancy (p = 0.048), lamotrigine usage in polytherapy (p = 0.008), and disabling seizure occurrence pre-pregnancy (p = 0.027).
Conclusion:
This Canadian audit provides an in-depth description of pregnancies benefiting from specialized epilepsy care. Our results suggest an association between disabling seizure occurrence during pregnancy and lamotrigine usage in polytherapy that warrants further evaluation.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.