We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Let $\mathbb{F}=\mathbb{R}$ or $\mathbb{C}$. For $i=1,2$, let $K_{i}$ be a locally compact (Hausdorff) topological space and let ${\mathcal{H}}_{i}$ be a closed subspace of ${\mathcal{C}}_{0}(K_{i},\mathbb{F})$ such that each point of the Choquet boundary $\operatorname{Ch}_{{\mathcal{H}}_{i}}K_{i}$ of ${\mathcal{H}}_{i}$ is a weak peak point. We show that if there exists an isomorphism $T:{\mathcal{H}}_{1}\rightarrow {\mathcal{H}}_{2}$ with $\left\Vert T\right\Vert \cdot \left\Vert T^{-1}\right\Vert <2$, then $\operatorname{Ch}_{{\mathcal{H}}_{1}}K_{1}$ is homeomorphic to $\operatorname{Ch}_{{\mathcal{H}}_{2}}K_{2}$. We then provide a one-sided version of this result. Finally we prove that under the assumption on weak peak points the Choquet boundaries have the same cardinality provided ${\mathcal{H}}_{1}$ is isomorphic to ${\mathcal{H}}_{2}$.
We establish an extension of the Banach–Stone theorem to a class of isomorphisms more general than isometries in a noncompact framework. Some applications are given. In particular, we give a canonical representation of some (not necessarily linear) operators between products of function spaces. Our results are established for an abstract class of function spaces included in the space of all continuous and bounded functions defined on a complete metric space.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.