The present paper studies the whistler wave interaction with an electron beam propagating through magnetized plasma. A dispersion relation of whistler waves has been derived, and first-order perturbation theory has been employed to obtain the growth rate of whistlers in the presence of parallel as well as oblique electron beam. For whistler waves propagating parallel to the magnetic field, that is, parallel whistlers, only the cyclotron resonance appears with a parallel beam, while for whistler waves propagating at an angle to the magnetic field, that is, oblique whistlers interaction with parallel beam or parallel whistlers interaction with oblique beam, the Cerenkov and the cyclotron resonances both appear. The growth rate is found to increase with an increase in the transverse component of beam velocity and with an increase in the strength of magnetic field. The whistler wave frequency decreases with an increase in the beam velocity. The obliqueness of the whistler mode modifies its dispersion characteristics as well as growth rate of the instability. For purely parallel-propagating beams, it is essential for the growth of whistler mode that the wave number perpendicular to the magnetic field should not be zero. The results presented may be applied to explain the mechanisms of the whistler wave excitation in space plasma.