We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
The majority of pediatric medications are dosed according to weight and therefore accurate weight assessment is essential. However, this can be difficult in the unpredictable and peripatetic prehospital care setting, and medication errors are common. The Handtevy method and the Broselow tape are two systems designed to guide Emergency Medical Services (EMS) providers in both pediatric patient weight estimation and medication dosing. The accuracy of the Handtevy method of weight estimation as practiced in the field by EMS has not been previously examined.
Study Objective:
The primary objective of this study was to examine the field performance of the Handtevy method and the Broselow tape with respect to prehospital patient weight estimation.
Methods:
This was a retrospective chart review of trauma and non-trauma patients transported by EMS to the emergency department (ED) of a quaternary care children’s hospital from January 1, 2021 through June 30, 2021. Demographic data, ED visit information, prehospital weight estimation, and medication dosing were collected and analyzed. Scale-based weight from the ED was used as the standard for comparison.
Results:
A total of 509 patients <13 years of age were included in this study. The EMS providers using the Broselow method estimated patient weight to within +/-10% of ED scale weight in 51.3% of patients. When using the Handtevy method, the EMS providers estimated patient weight to within +/-10% of ED scale weight in 43.7% of patients. When comparing the Handtevy versus Broselow method of prehospital weight estimation, there was no significant association between method and categorized weight discrepancy (over, under, or accurate estimates – defined as within 10% of ED scale weight; P = .25) or percent weight discrepancy (P = .75). On average, prehospital weight estimation was 6.33% lower than ED weight with use of the Handtevy method and 6.94% lower with use of the Broselow method.
Conclusion:
This study demonstrated no statistically significant difference between the use of the Handtevy or Broselow methods with respect to prehospital weight estimation. While further research is necessary, these results suggest similar field performance of the Broselow and Handtevy methods.
To assess the performance of two pediatric length-based tapes (Broselow and Handtevy) in predicting actual weights of US children.
Methods
In this descriptive study, weights and lengths of children (newborn through 13 years of age) were extracted from the 2009-2010 National Health and Nutrition Examination Survey (NHANES). Using the measured length ranges for each tape and the NHANES-extracted length data, every case from the study sample was coded into Broselow and Handtevy zones. Mean weights were calculated for each zone and compared to the predicted Broselow and Handtevy weights using measures of bias, precision, and accuracy. A sub-sample was examined that excluded cases with body mass index (BMI)≥95th percentile. Weights of children longer than each tape also were examined.
Results
A total of 3,018 cases from the NHANES database met criteria. Although both tapes underestimated children’s weight, the Broselow tape outperformed the Handtevy tape across most length ranges in measures of bias, precision, and accuracy of predicted weights relative to actual weights. Accuracy was higher in the Broselow tape for shorter children and in the Handtevy tape for taller children. Among the sub-sample with cases of BMI≥95th percentile removed, performance of the Handtevy tape improved, yet the Broselow tape still performed better. When assessing the weights of children who were longer than either tape, the actual mean weights did not approximate adult weights; although, those exceeding the Handtevy tape were closer.
Conclusions
For pediatric weight estimation, the Broselow tape performed better overall than the Handtevy tape and more closely approximated actual weight.
LoweCG, CampwalaRT, ZivN, WangVJ. The Broselow and Handtevy Resuscitation Tapes: A Comparison of the Performance of Pediatric Weight Prediction. Prehosp Disaster Med. 2016;31(4):364–375.
A number of individual risk factors for childhood obesity have been identified, but only some of these are amenable to prevention. To assess the amount of cases in a general population attributable to these risk factors, adjusted population-attributable fractions were estimated.
Design
Cross-sectional study.
Setting
Obligatory school entry examination in 2001/2002 in six Bavarian communities (Germany).
Subjects
5472 children at age 5–6 years.
Measures
Anthropometric measures were ascertained by public health nurses, and measures concerning sociodemographics, lifestyle and child behaviour such as child's daily meal frequency were obtained with self-administered parental questionnaires. Obesity was defined according to sex- and age-specific body mass index cut-off points proposed by the International Obesity Task Force. Adjusted population-attributable fractions were calculated based on logistic regression.
Results
A combination of the risk factors low meal frequency, decreased physical activity, watching television >1 h day− 1, formula feeding and smoking in pregnancy accounted for 48.2% of obese children. This combination yielded a maximal achievable prevalence reduction of 1.5% for obesity (3.2% observed prevalence).
Conclusions
A modification of five known risk factors for childhood overweight and obesity could reasonably lower obesity prevalences at school entry. These risk factors should be particularly considered in decision making on preventive measures.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.