We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We prove that the $p^\infty$-torsion of the transcendental Brauer group of an abelian variety over a finitely generated field of characteristic $p>0$ is bounded. This answers a (variant of a) question asked by Skorobogatov and Zarhin for abelian varieties. To do this, we prove a ‘flat Tate conjecture’ for divisors. We also study other geometric Galois-invariant $p^\infty$-torsion classes of the Brauer group which are not in the transcendental Brauer group. These classes, in contrast with our main theorem, can be infinitely $p$-divisible. We explain how the existence of these $p$-divisible towers is naturally related to the failure of surjectivity of specialisation morphisms of Néron–Severi groups in characteristic $p$.
Using the theory of cohomological invariants for algebraic stacks, we compute the Brauer group of the moduli stack of hyperelliptic curves ${\mathcal {H}}_g$ over any field of characteristic $0$. In positive characteristic, we compute the part of the Brauer group whose order is prime to the characteristic of the base field.
We prove that the essential dimension of central simple algebras of degree $p^{\ell m}$ and exponent $p^{m}$ over fields $F$ containing a base-field $k$ of characteristic $p$ is at least $\ell +1$ when $k$ is perfect. We do this by observing that the $p$-rank of $F$ bounds the symbol length in $\text{Br}_{p^{m}}(F)$ and that there exist indecomposable $p$-algebras of degree $p^{\ell m}$ and exponent $p^{m}$. We also prove that the symbol length of the Kato-Milne cohomology group $\text{H}_{p^{m}}^{n+1}(F)$ is bounded from above by $\binom{r}{n}$ where $r$ is the $p$-rank of the field, and provide upper and lower bounds for the essential dimension of Brauer classes of a given symbol length.
Let ${\mathcal{X}}$ be a regular variety, flat and proper over a complete regular curve over a finite field such that the generic fiber $X$ is smooth and geometrically connected. We prove that the Brauer group of ${\mathcal{X}}$ is finite if and only Tate’s conjecture for divisors on $X$ holds and the Tate–Shafarevich group of the Albanese variety of $X$ is finite, generalizing a theorem of Artin and Grothendieck for surfaces to arbitrary relative dimension. We also give a formula relating the orders of the group under the assumption that they are finite, generalizing the known formula for a surface.
We give a formula relating the order of the Brauer group of a surface fibered over a curve over a finite field to the order of the Tate–Shafarevich group of the Jacobian of the generic fiber. The formula implies that the Brauer group of a smooth and proper surface over a finite field is a square if it is finite.
We study abelian varieties and K3 surfaces with complex multiplication defined over number fields of fixed degree. We show that these varieties fall into finitely many isomorphism classes over an algebraic closure of the field of rational numbers. As an application we confirm finiteness conjectures of Shafarevich and Coleman in the CM case. In addition we prove the uniform boundedness of the Galois invariant subgroup of the geometric Brauer group for forms of a smooth projective variety satisfying the integral Mumford–Tate conjecture. When applied to K3 surfaces, this affirms a conjecture of Várilly-Alvarado in the CM case.
We show that the torsion in the group of indecomposable $(2,1)$-cycles on a smooth projective variety over an algebraically closed field is isomorphic to a twist of its Brauer group, away from the characteristic. In particular, this group is infinite as soon as $b_{2}-{\it\rho}>0$. We derive a new insight into Roǐtman’s theorem on torsion $0$-cycles over a surface.
Let $A$ be an abelian variety defined over a field $k$. In this paper we define a descending filtration $\{F^{r}\}_{r\geqslant 0}$ of the group $\mathit{CH}_{0}(A)$ and prove that the successive quotients $F^{r}/F^{r+1}\otimes \mathbb{Z}[1/r!]$ are isomorphic to the group $(K(k;A,\dots ,A)/Sym)\otimes \mathbb{Z}[1/r!]$, where $K(k;A,\dots ,A)$ is the Somekawa $K$-group attached to $r$-copies of the abelian variety $A$. In the special case when $k$ is a finite extension of $\mathbb{Q}_{p}$ and $A$ has split multiplicative reduction, we compute the kernel of the map $\mathit{CH}_{0}(A)\otimes \mathbb{Z}[\frac{1}{2}]\rightarrow \text{Hom}(Br(A),\mathbb{Q}/\mathbb{Z})\otimes \mathbb{Z}[\frac{1}{2}]$, induced by the pairing $\mathit{CH}_{0}(A)\times Br(A)\rightarrow \mathbb{Q}/\mathbb{Z}$.
Let be a moduli space of stable parabolic vector bundles of rank n ≥ 2 and fixed determinant of degree d over a compact connected Riemann surface X of genus g(X) ≥ g(X) = 2, then we assume that n > 2. Let m denote the greatest common divisor of d, n and the dimensions of all the successive quotients of the quasi–parabolic filtrations. We prove that the Brauer group Br is isomorphic to the cyclic group ℤ/mℤ. We also show that Br is generated by the Brauer class of the Brauer–Severi variety over obtained by restricting the universal projective bundle over X × .
We exhibit central simple algebras over the function field of a diagonal quartic surface over the complex numbers that represent the 2-torsion part of its Brauer group. We investigate whether the 2-primary part of the Brauer group of a diagonal quartic surface over a number field is algebraic and give sufficient conditions for this to be the case. In the last section we give an obstruction to weak approximation due to a transcendental class on a specific diagonal quartic surface, an obstruction which cannot be explained by the algebraic Brauer group which in this case is just the constant algebras.
In the present paper we study some homotopy invariants which can be defined by means of bundles with fiber being a matrix algebra. In particular, we introduce some generalization of the Brauer group in the topological context and show that any of its elements can be represented as a locally trivial bundle with the structure group , k ∈ . Finally, we discuss its possible applications in the twisted K-theory.
We use twisted sheaves and their moduli spaces to study the Brauer group of a scheme. In particular, we (1) show how twisted methods can be efficiently used to re-prove the basic facts about the Brauer group and cohomological Brauer group (including Gabber’s theorem that they coincide for a separated union of two affine schemes), (2) give a new proof of de Jong’s period-index theorem for surfaces over algebraically closed fields, and (3) prove an analogous result for surfaces over finite fields. We also include a reduction of all period-index problems for Brauer groups of function fields over algebraically closed fields to characteristic zero, which (among other things) extends de Jong’s result to include classes of period divisible by the characteristic of the base field. Finally, we use the theory developed here to give counterexamples to a standard type of local-to-global conjecture for geometrically rational varieties over the function field of the projective plane.
Let $X$ be a smooth and projective variety such that $X$ is fibred over the projective space. We give sufficient conditions ensuring that the fibres contain adelic points satisfying Manin-like conditions.
We study a ramification theory for a division algebra D of the following type: The center of D is a complete discrete valuation field K with the imperfect residue field F of certain type, and the residue algebra of D is commutative and purely inseparable over F. Using Swan conductors of the corresponding element of Br(K), we define ψ-function of D/K, and it describe the action of the reduced norm map on the filtration of D$^*$. We also gives a relation among the Swan conductors and the ’ramification number‘ of D, which is defined by the commutator group of D$^*$.
We study a ramification theory for a division algebra D of the following type: The center of D is a complete discrete valuation field K with the imperfect residue field F of certain type, and the residue algebra of D is commutative and purely inseparable over F. Using Swan conductors of the corresponding element of Br(K), we define Herbrand‘s ψ-function of D/K, and it describes the action of the reduced norm map on the filtration of D$^*$. We also gives a relation among the Swan conductors and the ’ramification number‘ of D, which is defined by the commutator group of D$^*$.
For a real Enriques surface $Y$ we prove that every homology class in $H_1(Y(R), Z/2)$ can be represented by a real algebraic curve if and only if all connected components of $Y(R)$ are orientable. Furthermore, we give a characterization of real Enriques surfaces which are Galois-Maximal and/or Z-Galois-Maximal and we determine the Brauer group of any real Enriques surface $Y$.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.